Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (6): 681-690.DOI: 10.15541/jim20230546
• RESEARCH ARTICLE • Previous Articles Next Articles
ZHANG Yuyu(), WU Yicheng, SUN Jia(
), FU Qiangang(
)
Received:
2023-11-29
Revised:
2023-12-29
Published:
2024-06-20
Online:
2024-01-08
Contact:
SUN Jia, associate professor. E-mail: j.sun@nwpu.edu.cn;About author:
ZHANG Yuyu (1997-), female, PhD candidate. E-mail: Zhangyuyu@mail.nwpu.edu.cn
Supported by:
CLC Number:
ZHANG Yuyu, WU Yicheng, SUN Jia, FU Qiangang. Preparation and Wave-absorbing Properties of Polymer-derived SiHfCN Ceramics[J]. Journal of Inorganic Materials, 2024, 39(6): 681-690.
SSPs | PDCs | PSN | Hf isopropoxide isopropanol complex | DVB | Melamine | Dimethylamino borane |
---|---|---|---|---|---|---|
P7Hf3 | SiHfCN | 7 | 3 | - | - | - |
P7Hf3-C | SiHfCN-C | 7 | 3 | 6 | - | - |
P7Hf3-N | SiHfCN-N | 7 | 3 | - | 6 | - |
P7Hf3-B | SiHfCN-B | 7 | 3 | - | - | 6 |
Table 1 Raw material proportions (%, in mass) of different samples
SSPs | PDCs | PSN | Hf isopropoxide isopropanol complex | DVB | Melamine | Dimethylamino borane |
---|---|---|---|---|---|---|
P7Hf3 | SiHfCN | 7 | 3 | - | - | - |
P7Hf3-C | SiHfCN-C | 7 | 3 | 6 | - | - |
P7Hf3-N | SiHfCN-N | 7 | 3 | - | 6 | - |
P7Hf3-B | SiHfCN-B | 7 | 3 | - | - | 6 |
Element | SiHfCN | SiHfCN-C | SiHfCN-N | SiHfCN-B |
---|---|---|---|---|
Si | 35.5 | 42.3 | 40.8 | 33.8 |
Hf | 22.5 | 18.6 | 20.4 | 13.5 |
C | 13.6 | 24 | 8.2 | 13.3 |
N | 22.8 | 9.4 | 55.5 | 29.8 |
O | 5.6 | 5.7 | 7.1 | 5.3 |
Empirical formula | SiHf0.10C0.90N1.29O0.28 | SiHf0.07C1.33N0.45O0.24 | SiHf0.08C0.47N2.73O0.31 | SiHf0.06C0.92N1.77O0.28B0.33 |
Table 2 Elemental contents (%, in mass) and empirical chemical compositions of the PDCs
Element | SiHfCN | SiHfCN-C | SiHfCN-N | SiHfCN-B |
---|---|---|---|---|
Si | 35.5 | 42.3 | 40.8 | 33.8 |
Hf | 22.5 | 18.6 | 20.4 | 13.5 |
C | 13.6 | 24 | 8.2 | 13.3 |
N | 22.8 | 9.4 | 55.5 | 29.8 |
O | 5.6 | 5.7 | 7.1 | 5.3 |
Empirical formula | SiHf0.10C0.90N1.29O0.28 | SiHf0.07C1.33N0.45O0.24 | SiHf0.08C0.47N2.73O0.31 | SiHf0.06C0.92N1.77O0.28B0.33 |
Fig. 5 SEM images and EDS analyses of the PDCs (a) SiHfCN; (b) SiHfCN-C; (c) SiHfCN-N; (d) SiHfCN-B; (e) Elemental contents (%, in atom) of spots in (a-d)
Fig. 6 TEM images of SiHfCN and SiHfCN-C (a-d) SiHfCN; (e-h) SiHfCN-C; (a, e) Bright field images; (b, c, f, g) HRTEM images with corresponding SAED inserted; (d, h) EDS mappings
Fig. 7 TEM images of SiHfCN-N and SiHfCN-B (a-d) SiHfCN-N; (e-h) SiHfCN-B; (a, e) Bright field images; (b, c, f, g) HRTEM images with corresponding SAED inserted; (d, h) EDS mappings
Fig. 8 Electromagnetic parameters of the PDCs (a) Real part; (b) Imaginary part; (c) Loss tangent; (d) Attenuation coefficient; (e, f) Cole-Cole curves; Colorful figures are available on website
Fig. 9 RL patterns and impedance matching maps of the PDCs (a-h) RL patterns; (i-l) Impedance matching maps; (a, b, i) SiHfCN; (c, d, j) SiHfCN-C; (e, f, k) SiHfCN-N; (g, h, l) SiHfCN-B
[1] | XIA Y, GAO W, GAO C. A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption. Advanced Functional Materials, 2022, 32(42):2204591. |
[2] | ZHOU R, WANG Y, LIU Z, et al. Digital light processing 3D-printed ceramic metamaterials for electromagnetic wave absorption. Nano-Micro Letters, 2022, 14: 122. |
[3] | ZOU Z, NING M, LEI Z, et al. 0D/1D/2D architectural Co@C/MXene composite for boosting microwave attenuation performance in 2-18 GHz. Carbon, 2022, 193: 182. |
[4] | QIAO M, QI J, WANG J, et al. Recent progress on 3D graphene aerogel based microwave absorbing materials. Acta Materiae Compositae Sinica, 2024, 41(2):550. |
[5] | SONG Y, LIU P, ZHOU R, et al. SiBNCx ceramics derived from single source polymeric precursor with controllable carbon structures for highly efficient electromagnetic wave absorption at high temperature. Carbon, 2022, 188: 12. |
[6] | SONG Y, JIN S, HU K, et al. Adjustable iron-containing SiBCN ceramics with high temperature microwave absorption and anti-oxidation properties. Journal of the American Ceramic Society, 2021, 104: 5244. |
[7] | CHEN P, CHEN J, WANG C, et al. The heterointerface of graphene in-situ growth for enhanced microwave attenuation properties in La-doped SiBCN ceramics. Ceramics International, 2023, 49(16):26642. |
[8] | ANAND R, LU K, NAYAK B B, et al. Structural evolution and oxidation resistance of polysilazane-derived SiCN-HfO2 ceramics. Journal of the American Ceramic Society, 2024, 107(3):1657. |
[9] | XIA Q, HAN Z, ZHANG Z, et al. High temperature microwave absorbing materials. Journal of Materials Chemistry C, 2023, 11(14):4552. |
[10] | JIAO X, HE Q, QING M, et al. Ablation behavior of C/C-Zr1-xHfxC-SiC composites under an oxyacetylene flame at above 2500 ℃. Journal of Materials Research and Technology, 2023, 24: 3235. |
[11] | REN B, DENG Y, JIA Y, et al. Achieving broadband electromagnetic absorption at a wide temperature range up to 1273 K by metamaterial design on polymer-derived SiC-BN@CNT ceramic composites. Chemical Engineering Journal, 2023, 478: 147251. |
[12] | SHEN J, TANG Z, TUSIIME R, et al. Effects of hafnium sources and hafnium content on the structures and properties of SiBNC-Hf ceramic precursors. Journal of the American Ceramic Society, 2023, 106(5):3239. |
[13] | SONG Y, LIU Z, ZHANG X, et al. Single source precursor derived SiBCNHf ceramic with enhanced high-temperature microwave absorption and antioxidation. Journal of Materials Science & Technology, 2022, 126: 215. |
[14] | SUN C, WANG H, ZHOU X. Research progress on ultra-high temperature ceramics powder prepared by precursor-derived method. Bulletin of the Chinese Ceramic Society, 2023, 42(8):2865. |
[15] | ZHAO Z, HAN C, WANG X, et al. Synthesis and pyrolysis of Hf-N-B backbone polymer precursor for HfC/HfB2 composite ceramics. Journal of the American Ceramic Society, 2024, 107(5):3424. |
[16] | ZHANG X, SUN J, ZHANG Y, et al. Microstructure and phase evolution of polymer-derived SiHfOC ceramic microspheres. Journal of the American Ceramic Society, 2022, 105(12):7726. |
[17] | ZHANG M, FAN X, YE F, et al. Synthesis, microstructure and electromagnetic properties of Hf-based SiBCN ceramics. Ceramics International, 2023, 49(12):19664. |
[18] | SONG L, WU C, ZHI Q, et al. Multifunctional SiC aerogel reinforced with nanofibers and nanowires for high-efficiency electromagnetic wave absorption. Chemical Engineering Journal, 2023, 467: 143518. |
[19] | LIU X, YU Z, ISHIKAWA R, et al. Single-source-precursor synthesis and electromagnetic properties of novel RGO-SiCN ceramic nanocomposites. Journal of Materials Chemistry C, 2017, 5(31):7950. |
[20] | CHEN Q, LI D, YANG Z, et al. SiBCN-reduced graphene oxide (rGO) ceramic composites derived from single-source-precursor with enhanced and tunable microwave absorption performance. Carbon, 2021, 179: 180. |
[21] | HOU Y, XIAO B, YANG G, et al. Enhanced electromagnetic wave absorption performance of novel carbon-coated Fe3Si nanoparticles in an amorphous SiCO ceramic matrix. Journal of Materials Chemistry C, 2018, 6(28):7661. |
[22] | ZHANG Y, SUN J, WANG Y, et al. SiCN ceramics with controllable carbon nanomaterials for electromagnetic absorption performance. Journal of the American Ceramic Society, 2023, 106(7):4220. |
[23] | ZENG G, XU P, ZENG C, et al. Preparation of HfCxN1-x nanoparticles derived from a multifunction precursor with Hf-O and Hf-N bonds. Materials, 2023, 16(12):4426. |
[24] | SUN J, WEN Q, LI T, et al. Phase evolution of SiOC-based ceramic nanocomposites derived from a polymethylsiloxane modified by Hf- and Ti-alkoxides. Journal of the American Ceramic Society, 2020, 103(2):1436. |
[25] | NADAR S S, RATHOD V K. One pot synthesis of α-amylase metal organic framework (MOF)-sponge via dip-coating technique. International Journal of Biological Macromolecules, 2019, 138: 1035. |
[26] | NOROUZI M, ELHAMIFAR D, MIRBAGHERI R. Phenylene- based periodic mesoporous organosilica supported melamine: an efficient, durable and reusable organocatalyst. Microporous and Mesoporous Materials, 2019, 278: 251. |
[27] | WANG H, ZHU W, SUN X, et al. Preparation of aerogel-like SiOC ceramic with honeycomb structure and its high-temperature performance. Journal of Alloys and Compounds, 2023, 937: 168438. |
[28] | WU C, WANG B, WU N, et al. Molecular-scale understanding on the structure evolution from melamine diborate supramolecule to boron nitride fibers. Ceramics International, 2020, 46(1):1083. |
[29] | TAVAKOLI A H, GERSTEL P, GOLCZEWSKI J A, et al. Kinetic effect of boron on the thermal stability of Si-(B-)C-N polymer- derived ceramics. Acta Materialia, 2010, 58(18):6002. |
[30] | CHENG Y, HU L, ZHANG K, et al. Facile synthesis of hollow SiC/C nanospheres for high-performance electromagnetic wave absorption. Carbon, 2023, 215: 118391. |
[31] | FERRARI A C, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B, 2000, 61(20):14095. |
[32] |
WANG K, MA B, LI X, et al. Structural evolutions in polymer-derived carbon-rich amorphous silicon carbide. Journal of Physical Chemistry A, 2015, 119(4):552.
DOI PMID |
[33] | ZHONG C, HOU Y, YANG W, et al. Carbon rich SiOC fibres derived from ceramic precursor for microwave absorption. Journal of Ceramics, 2023, 44(4):703. |
[34] | PANG L, LUO H, FAN X, et al. Electromagnetic wave absorbing performance of multiphase (SiC/HfC/C)/SiO2 nanocomposites with an unique microstructure. Journal of the European Ceramic Society, 2021, 41(4):2425. |
[35] | LUO C, MIAO P, TANG Y, et al. Excellent electromagnetic wave absorption of MOF/SiBCN nanomaterials at high temperature. Chinese Journal of Aeronautics, 2020, 34(11):277. |
[36] | PAN R, CHEN G, YU X, et al. Densification, microstructure and mechanical properties of Ta4HfC5-based ceramics obtained from synthesized nanoscale powder. Journal of the European Ceramic Society, 2021, 41(4):2247. |
[37] | JIA Y, AJAYI T D, RAMAKRISHNAN K R, et al. A skin layer made of cured polysilazane and yttria stabilized zirconia for enhanced thermal protection of carbon fiber reinforced polymers (CFRPs). Surface and Coatings Technology, 2020, 404: 126481. |
[38] | ZENG G, LI X, WEI Y, et al. Significantly toughened SiC foams with enhanced microwave absorption via in situ growth of Si3N4 nanowires. Chemical Engineering Journal, 2021, 426: 131745. |
[39] | WANG C, CHEN P, LI X, et al. Enhanced electromagnetic wave absorption for Y2O3-doped SiBCN ceramics. ACS Applied Materials & Interfaces, 2021, 13: 55440. |
[40] | ZHOU X, HAN H, WANG Y, et al. Silicon-coated fibrous network of carbon nanotube/iron towards stable and wideband electromagnetic wave absorption. Journal of Materials Science & Technology, 2022, 121: 199. |
[41] | ZHI D, LI T, QI Z, et al. Core-shell heterogeneous graphene-based aerogel microspheres for high-performance broadband microwave absorption via resonance loss and sequential attenuation. Chemical Engineering Journal, 2022, 433: 134496. |
[42] | YAO L, YANG W, ZHOU S, et al. Design paradigm for strong-lightweight perfect microwave absorbers: the case of 3D printed gyroid shellular SiOC-based metamaterials. Carbon, 2022, 196: 961. |
[43] | YU H, KOU X, ZUO X, et al. Optimization of multiple attenuation mechanisms by cation substitution in imidazolic MOFs-derived porous composites for superior broadband electromagnetic wave absorption. Journal of Materials Science & Technology, 2024, 176: 176. |
[44] | YANG S, TANG L, WEI H, et al. In-situ construction of volcanic rock-like structures in Yb2O3 modified reduced graphene oxide and their boosted electromagnetic wave absorbing properties. Carbon, 2023, 215: 118445. |
[1] | TAN Min, CHEN Xiaowu, YANG Jinshan, ZHANG Xiangyu, KAN Yanmei, ZHOU Haijun, XUE Yudong, DONG Shaoming. Microstructure and Oxidation Behavior of ZrB2-SiC Ceramics Fabricated by Tape Casting and Reactive Melt Infiltration [J]. Journal of Inorganic Materials, 2024, 39(8): 955-964. |
[2] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[3] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[4] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[5] | ZHANG Zhao-Fu,SHA Jian-Jun,ZU Yu-Fei,DAI Ji-Xiang. ZrB2-SiC Composites Toughened by Interlocking Microstructure and Chopped Carbon Fiber [J]. Journal of Inorganic Materials, 2019, 34(9): 918-924. |
[6] | SHI Jian-Jun, ZHANG Zong-Bo, FENG Zhi-Hai, ZHANG Da-Hai, WANG Yun, XU Cai-Hong. Modification of Oxidation Resistance for Low Density Carbon-bonded Carbon Fiber (CBCF) Composite [J]. Journal of Inorganic Materials, 2018, 33(7): 728-734. |
[7] | ZHENG Hai-Ya, MENG Chen-Xi, HU Dong-Li, GU Hui, LIU Hai-Tao, ZHANG Guo-Jun. EBSD Analysis for Orientation Relationship of Textured ZrB2-SiC Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2018, 33(4): 380-384. |
[8] | YUAN Qin, SONG Yong-Cai. Research and Development of Continuous SiC Fibers and SiCf/SiC Composities [J]. Journal of Inorganic Materials, 2016, 31(11): 1157-1165. |
[9] | ZHENG Qiang, WANG Xian-Hao, XING Juan-Juan, GU Hui, ZHANG Guo-Jun. Quantitative Analysis for Phase Compositions of ZrB2-SiC-ZrC Ultra-High Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2013, 28(4): 358-362. |
[10] | ZHOU Hai-Jun, ZHANG Xiang-Yu, GAO Le, HU Jian-Bao, WU Bin, DONG Shao-Ming. Ablation Properties of ZrB2-SiC Ultra-high Temperature Ceramic Coatings [J]. Journal of Inorganic Materials, 2013, 28(3): 256-260. |
[11] | YAN Yong-Jie,ZHANG Hui,HUANG Zheng-Ren,LIU Xue-Jian. Oxidation Behaviors of the Pressureless Sintered ZrB2-SiC Composites [J]. Journal of Inorganic Materials, 2009, 24(3): 631-635. |
[12] | YANG Fei-Yu,ZHANG Xing-Hong,HAN Jie-Cai,DU Shan-Yi. Ablation Mechanism of ZrB2-SiC and Csf/ZrB2-SiC Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2008, 23(4): 734-738. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||