Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (7): 785-792.DOI: 10.15541/jim20220761
Special Issue: 【能源环境】储能电池(202506)
• RESEARCH ARTICLE • Previous Articles Next Articles
GUO Yuxiang1(), HUANG Liqiang2, WANG Gang1(
), WANG Hongzhi1(
)
Received:
2022-12-19
Revised:
2023-02-10
Published:
2023-03-10
Online:
2023-03-09
Contact:
WANG Gang, professor. E-mail: gwf8707@dhu.edu.cn;About author:
GUO Yuxiang (1997-), male, Master candidate. E-mail: 18939371679@163.com
Supported by:
CLC Number:
GUO Yuxiang, HUANG Liqiang, WANG Gang, WANG Hongzhi. Dual-lithium-salt Gel Complex Electrolyte: Preparation and Application in Lithium-metal Battery[J]. Journal of Inorganic Materials, 2023, 38(7): 785-792.
Fig. 1 Preparation and structural analysis of GCE (a) Polymerization reaction of PEGDA; (b) Optical photographs of GCE-x; (c, d) FT-IR spectra of GCE-20, PEGDA and LE; (e) XRD patterns of GCE-x; Colorful figures are available on website
Fig. 2 Electrochemical performance of GCE-20 (a) Ionic conductivities of LE and GCE-20; (b) LSV curves of LE and GCE-20; (c) Current-time profile of Li|GCE-20|Li cell with inset showing corresponding Nyquist plots; (d) Voltage-time curves of symmetric Li||Li cells assembled with LE and GCE-20; (e) Nyquist plots of Li|GCE-20|Li cell after cycling; (f) Voltage-time and current density-time curves of Li|GCE-20|Li cell; Colorful figures are available on website
Fig. 3 SEM images of metallic Li Cross-sectional (up) and top-view (down) SEM images of (a) fresh metallic Li and lithium deposition morphology in symmetric Li||Li cells with (b) LE and (c) GCE-20
Fig. 4 Electrochemical performance of the Li|GCE-20|LiFePO4 cells (a) Cycling performance and (b) corresponding voltage-capacity curves at 0.2C; (c) Rate performance and (d) corresponding voltage-capacity curves; Colorful figures are available on website
Fig. S5 XPS spectra of metallic Li anode in symmetric Li||Li cells (a, d) C1s, (b, e) O1s, (c, f) F1s XPS spectra of metallic Li anode with (a-c) LE and (d-f) GCE-20
[1] |
GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries. Chemistry of Materials, 2010, 22(3):587.
DOI URL |
[2] |
ZHAO J, LIAO L, SHI F, et al. Surface fluorination of reactive battery anode materials for enhanced stability. Journal of the American Chemical Society, 2017, 139(33):11550.
DOI PMID |
[3] |
TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861):359.
DOI URL |
[4] |
ZHI J, YAZDI A Z, VALAPPIL G, et al. Artificial solid electrolyte interphase for aqueous lithium energy storage systems. Science Advances, 2017, 3(9):e1701010.
DOI URL |
[5] | JUN K, SUN Y, XIAO Y, et al. Lithium superionic conductors with corner-sharing frameworks. Nature Materials, 2022, 21: 924. |
[6] |
LIU J, BAO Z, CUI Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nature Energy, 2019, 4(3):180.
DOI |
[7] |
DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: a battery of choices. Science, 2011, 334(6058):928.
DOI PMID |
[8] |
MAUGER A, JULIEN C M, PAOLELLA A, et al. Building better batteries in the solid state: a review. Materials, 2019, 12(23):3892.
DOI URL |
[9] |
MANTHIRAM A, YU X, WANG S. Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews Materials, 2017, 2(4):16103.
DOI |
[10] |
ZHOU D, SHANMUKARAJ D, TKACHEVA A, et al. Polymer electrolytes for lithium-based batteries: advances and prospects. Chem, 2019, 5(9):2326.
DOI |
[11] | TAN S J, YUE J, TIAN Y F, et al. In-situ encapsulating flame- retardant phosphate into robust polymer matrix for safe and stable quasi-solid-state lithium metal batteries. Energy Storage Materials, 2021, 39: 186. |
[12] |
ZHAO Q, LIU X, STALIN S, et al. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nature Energy, 2019, 4(5):365.
DOI |
[13] | ZHOU Z, FENG Y, WANG J, et al. A robust, highly stretchable ion-conducive skin for stable lithium metal batteries. Chemical Engineering Journal, 2020, 396: 125254. |
[14] |
WILKEN S, TRESKOW M, SCHEERS J, et al. Initial stages of thermal decomposition of LiPF6-based lithium ion battery electrolytes by detailed Raman and NMR spectroscopy. RSC Advances, 2013, 3(37):16359.
DOI URL |
[15] |
LIU F Q, WANG W P, YIN Y X, et al. Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Science Advances, 2018, 4(10):eaat5383.
DOI URL |
[16] |
XU C, SUN B, GUSTAFSSON T, et al. Interface layer formation in solid polymer electrolyte lithium batteries: an XPS study. Journal of Materials Chemistry A, 2014, 2(20):7256.
DOI URL |
[17] |
WEI Z, CHEN S, WANG J, et al. Superior lithium ion conduction of polymer electrolyte with comb-like structure via solvent-free copolymerization for bipolar all-solid-state lithium battery. Journal of Materials Chemistry A, 2018, 6(27):13438.
DOI URL |
[18] |
DI NOTO V, LAVINA S, GIFFIN G A, et al. Polymer electrolytes: present, past and future. Electrochimica Acta, 2011, 57(15):4.
DOI URL |
[19] |
XUE Z, HE D, XIE X. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3(38):19218.
DOI URL |
[20] | MINDEMARK J, LACEY M J, BOWDEN T, et al. Beyond PEO-Alternative host materials for Li+-conducting solid polymer electrolytes. Progress in Polymer Science, 2018, 81: 114. |
[21] | ARAVINDAN V, GNANARAJ J, MADHAVI S, et al. Lithium-ion conducting electrolyte salts for lithium batteries. Chemistry-A European Journal, 2011, 17(51):14326. |
[22] |
XU K. Electrolytes and interphases in Li-ion batteries and beyond. Chemical Reviews, 2014, 114(23):11503.
DOI PMID |
[23] |
YANG H, ZHUANG G V, ROSS JR P N. Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6. Journal of Power Sources, 2006, 161(1):573.
DOI URL |
[24] |
LI Q, LIU G, CHENG H, et al. Low-temperature electrolyte design for lithium-ion batteries: prospect and challenges. Chemistry-A European Journal, 2021, 27(64):15842.
DOI URL |
[25] |
JIAO S, REN X, CAO R, et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nature Energy, 2018, 3(9):739.
DOI |
[26] |
LIU Y, YU P, SUN Q, et al. Predicted operando polymerization at lithium anode via boron insertion. ACS Energy Letters, 2021, 6(6):2320.
DOI URL |
[27] | CAO W, LU J, ZHOU K, et al. Organic-inorganic composite SEI for a stable Li metal anode by in-situ polymerization. Nano Energy, 2022, 95: 106983. |
[28] |
CHENG S, SMITH D M, LI C Y. How does nanoscale crystalline structure affect ion transport in solid polymer electrolytes? Macromolecules, 2014, 47(12):3978.
DOI URL |
[29] |
JOHANSSON P. First principles modelling of amorphous polymer electrolytes: Li+-PEO, Li+-PEI, and Li+-PES complexes. Polymer, 2001, 42(9):4367.
DOI URL |
[30] | SUN B, MINDEMARK J, EDSTRÖM K, et al. Polycarbonate- based solid polymer electrolytes for Li-ion batteries. Solid State Ionics, 2014, 262: 738. |
[31] |
SILVA M M, BARROS S C, SMITH M J, et al. Characterization of solid polymer electrolytes based on poly (trimethylenecarbonate) and lithium tetrafluoroborate. Electrochimica Acta, 2004, 49(12): 1887.
DOI URL |
[32] |
BARBOSA P, RODRIGUES L, SILVA M M, et al. Characterization of pTMCnLiPF6 solid polymer electrolytes. Solid State Ionics, 2011, 193(1):39.
DOI URL |
[1] | QU Jifa, WANG Xu, ZHANG Weixuan, ZHANG Kangzhe, XIONG Yongheng, TAN Wenyi. Enhanced Sulfur-resistance for Solid Oxide Fuel Cells Anode via Doping Modification of NaYTiO4 [J]. Journal of Inorganic Materials, 2025, 40(5): 489-496. |
[2] | XUE Ke, CAI Changkun, XIE Manyi, LI Shuting, AN Shengli. Pr1+xBa1-xFe2O5+δ Cathode Materials for Solid Oxide Fuel Cells: Preparation and Electrochemical Performance [J]. Journal of Inorganic Materials, 2025, 40(4): 363-371. |
[3] | XIN Zhenyu, GUO Ruihua, WUREN Tuoya, WANG Yan, AN Shengli, ZHANG Guofang, GUAN Lili. Pt-Fe/GO Nanocatalysts: Preparation and Electrocatalytic Performance on Ethanol Oxidation [J]. Journal of Inorganic Materials, 2025, 40(4): 379-387. |
[4] | YANG Shuqi, YANG Cunguo, NIU Huizhu, SHI Weiyi, SHU Kewei. GeP3/Ketjen Black Composite: Preparation via Ball Milling and Performance as Anode Material for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(3): 329-336. |
[5] | LIU Lei, GUO Ruihua, WANG Li, WANG Yan, ZHANG Guofang, GUAN Lili. Oxygen Reduction Reaction on Pt3Co High-index Facets by Density Functional Theory [J]. Journal of Inorganic Materials, 2025, 40(1): 39-46. |
[6] | PAN Jianlong, MA Guanjun, SONG Lemei, HUAN Yu, WEI Tao. High Stability/Catalytic Activity Co-based Perovskite as SOFC Anode: In-situ Preparation by Fuel Reducing Method [J]. Journal of Inorganic Materials, 2024, 39(8): 911-919. |
[7] | CHEN Ze, ZHI Chunyi. MXene Based Zinc Ion Batteries: Recent Development and Prospects [J]. Journal of Inorganic Materials, 2024, 39(2): 204-214. |
[8] | YANG Daihui, SUN Tian, TIAN Hexin, SHI Xiaofei, MA Dongwei. Iron-nitrogen-codoped Mesoporous Carbon: Facile Synthesis and Catalytic Performance of Oxygen Reduction Reaction [J]. Journal of Inorganic Materials, 2023, 38(11): 1309-1315. |
[9] | TAN Shuyu, LIU Xiaoning, BI Zhijie, WAN Yong, GUO Xiangxin. Jointing of Cathode Coating and Interface Modification for Stabilizing Poly(ethylene oxide) Electrolytes Against High-voltage Cathodes [J]. Journal of Inorganic Materials, 2023, 38(12): 1466-1474. |
[10] | YAO Yishuai, GUO Ruihua, AN Shengli, ZHANG Jieyu, CHOU Kuochih, ZHANG Guofang, HUANG Yarong, PAN Gaofei. In-situ Loaded Pt-Co High Index Facets Catalysts: Preparation and Electrocatalytic Performance [J]. Journal of Inorganic Materials, 2023, 38(1): 71-78. |
[11] | FAN Shuai, JIN Tian, ZHANG Shanlin, LUO Xiaotao, LI Chengxin, LI Changjiu. Effect of Li2O Sintering Aid on Sintering Characteristics and Electrical Conductivity of LSGM Electrolyte for Solid Oxide Fuel Cell [J]. Journal of Inorganic Materials, 2022, 37(10): 1087-1092. |
[12] | CHEN Saisai, PANG Yali, WANG Jiaona, GONG Yan, WANG Rui, LUAN Xiaowan, LI Xin. Preparation and Properties of Green-yellow Reversible Electro-thermochromic Fabric [J]. Journal of Inorganic Materials, 2022, 37(9): 954-960. |
[13] | CHEN Ying, LUAN Weiling, CHEN Haofeng, ZHU Xuanchen. Multi-scale Failure Behavior of Cathode in Lithium-ion Batteries Based on Stress Field [J]. Journal of Inorganic Materials, 2022, 37(8): 918-924. |
[14] | JIANG Yiyi, SHEN Min, SONG Banxia, LI Nan, DING Xianghuan, GUO Leyi, MA Guoqiang. Effect of Dual-functional Electrolyte Additive on High Temperature and High Voltage Performance of Li-ion Battery [J]. Journal of Inorganic Materials, 2022, 37(7): 710-716. |
[15] | XIAO Meixia, LI Miaomiao, SONG Erhong, SONG Haiyang, LI Zhao, BI Jiaying. Halogenated Ti3C2 MXene as High Capacity Electrode Material for Li-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(6): 660-668. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||