Journal of Inorganic Materials ›› 2018, Vol. 33 ›› Issue (10): 1131-1135.DOI: 10.15541/jim20180107
Special Issue: 离子电池材料
• RESEARCH PAPER • Previous Articles Next Articles
GU Feng1,2, WANG You-Wei2, ZHENG Zhi-Hui1,2, LIU Jian-Jun2, LU Wen-Cong1
Received:
2018-03-12
Revised:
2018-05-02
Published:
2018-10-20
Online:
2018-09-25
About author:
GU Feng. E-mail: fenggu@student.sic.ac.cn
Supported by:
CLC Number:
GU Feng, WANG You-Wei, ZHENG Zhi-Hui, LIU Jian-Jun, LU Wen-Cong. Catalytic Mechanism of Palladium Catalyst for the Oxidation Reduction and Evolution Reaction of Lithium-air Battery[J]. Journal of Inorganic Materials, 2018, 33(10): 1131-1135.
Fig. 1 Fcc, Hcp and Top sites on the Pd (111) surface of oxygen atoms from (a) top view and (b) main view, and (c) relationship between three kinds of adsorption sites on the coverage rate
Fig. 2 (a) Energy profiles of two different oxygen evolution reaction paths of Li2O2 for Li+→Li+→O2 with charge voltage of 2.85 V (black line) and Li+→O2→Li+ with charge voltage of 3.78 V (red line); (b) Sketch maps of Li+→Li+→O2 and Li+→O2→ Li+ oxygen evolution reaction paths of Li2O2 with red ball indicating O, blue ball indicating Pd, and purple ball indicating Li
Fig. 3 (a) Calculated structure of Pd(111)/ Li2O2/O2 interface with red ball indicating O, blue ball indicating Pd, and purple ball indicating Li; (b) Bader charge analysis of O and Pd with oxygen reduction reaction of Li2O2, the calculated O atoms and Pd atoms in charge transfer analysis correspond to labeled O atoms and Pd atoms in figure (a); (c) Bader charge analysis of O and Pd with the oxygen evolution reaction of Li2O2, the calculated O atoms and Pd atoms in charge transfer analysis correspond to labeled O atoms and Pd atoms in figure (a)
[1] | PENG Z Q, FREUNBERGER S A, CHEN Y H, et al. A reversible and higher-rate LiO2 battery. Science, 2012, 337(6094): 563-566. |
[2] | GIRISHKUMAR G, MCCLOSKEY B, LUNTZ A C, et al. Lithium- air battery: promise and challenges. Journal of Physical Chemistry Letters, 2010, 1(14): 2193-2203. |
[3] | SHAO Y Y, DING F, XIAO J et al. Making Li-air batteries rechargeable: material challenges. Advanced Functional Materials, 2013, 23(8): 987-1004. |
[4] | LI F J, ZHANG T, ZHOU H S.Challenges of non-aqueous Li-O2 batteries: electrolytes, catalysts, and anodes.Energy & Environmental Science, 2013, 6(4): 1125-1141. |
[5] | CHRISTENSEN J, ALBERTUS P, SANCHEZ-CARRERA R S, et a. A critical review of Li/Air batteries. Journal of the Electrochemical Society, 2012, 159(2): R1-R30. |
[6] | JUNG H G, HASSOUN J, PARK J B, et al. An improved high-performance lithium-air battery. Nature Chemistry, 2012, 4(7): 579-585. |
[7] | CHENG H, SCOTT K.Selection of oxygen reduction catalysts for rechargeable lithium-air batteries-metal or oxide?Applied Catalysis B-Environmental, 2011, 108(1/2): 140-151. |
[8] | WANG L, ZHAO X, LU Y H, et al. CoMn2O4 spinel nanoparticles grown on graphene as bifunctional catalyst for lithium-air batteries. Journal of the Electrochemical Society, 2011, 158(12): A1379-A1382. |
[9] | YANG W, SALIM J, LI S A, et al. Perovskite Sr0.95Ce0.05CoO3-δ loaded with copper nanoparticles as a bifunctional catalyst for lithium-air batteries. Journal of Materials Chemistry, 2012, 22(36): 18902-18907. |
[10] | DEBART A, BAO J, ARMSTRONG G, et al. An O2 cathode for rechargeable lithium batteries: the effect of a catalyst. Journal of Power Sources, 2007, 174(2): 1177-1182. |
[11] | DEBART A, PATERSON A J, BAO J, et al. α-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. Angewandte Chemie-International Edition, 2008, 47(24): 4521-4524. |
[12] | THAPA A K, SAIMEN K, ISHIHARA T.Pd/MnO2 air electrode catalyst for rechargeable lithium/air battery.Electrochemical and Solid State Letters, 2010, 13(11): A165-A167. |
[13] | LU Y C, XU Z C, GASTEIGER H A,et al. Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. Journal of the American Chemical Society, 2010, 132(35): 12170-12171. |
[14] | LI P F, ZHANG J K, YU Q L, et al. One-dimensional porous La0.5Sr0.5CoO2. 91 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries. Electrochimica Acta, 2015, 165: 78-84. |
[15] | KALUBARME R S, PARK G E, JUNG K N, et al. LaNixCo1-xO3-δ perovskites as catalyst material for non-aqueous lithium-oxygen batteries. Journal of the Electrochemical Society, 2014, 161(6): A880-A889. |
[16] | SUN N, LIU H X, YU Z Y, et al. The La0.6Sr0.4CoO3 perovskite catalyst for Li-O2 battery. Solid State Ionics, 2014, 268: 125-130. |
[17] | ZHONG L, MITCHELL R R, LIU Y, et al. In situ transmission electron microscopy observations of electrochemical oxidation of Li2O2. Nano Letters, 2013, 13(5): 2209-2214. |
[18] | LEI Y, LU J, LUO X, et al. Synthesis of porous carbon supported palladium nanoparticle catalysts by atomic layer deposition: application for rechargeable lithium-O2 battery. Nano Letters, 2013, 13(9): 4182-4189. |
[19] | MA S, WU Y, WANG J, et al. Reversibility of noble metal- catalyzed aprotic Li-O2 batteries. Nano Letters, 2015, 15(12): 8084-8090. |
[20] | KRESSE G, FURTHMULLER J.Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996, 6(1): 15-50. |
[21] | KRESSE G, FURTHMüLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996, 54(16): 11169-11186. |
[22] | SETYAWAN W, CURTAROLO S.High-throughput electronic band structure calculations: challenges and tools.Computational Materials Science, 2010, 49(2): 299-312. |
[23] | REUTER K, SCHEFFLER M.Composition, structure,stability of RuO2 (110) as a function of oxygen pressure. Physical Review B, 2001, 65(3): 035406-1-11. |
[24] | REUTER K, SCHEFFLER M.Composition and structure of the RuO2 (110) surface in an O2 and CO environment: implications for the catalytic formation of CO2. Physical Review B, 2003, 68(4): 045407-1-11. |
[25] | REUTER K, SCHEFFLER M. First-principles atomistic thermodynamics for oxidation catalysis: surface phase diagrams and catalytically interesting regions. Physical Review Letters, 2003, 90(4): 046103-1-4. |
[26] | ZHANG W, SMITH J R, WANG X G. Thermodynamics from ab initio computations. Physical Review B, 2004, 70(2): 024103-1-8. |
[27] | MO Y, ONG S P, CEDER G. First-principles study of the oxygen evolution reaction of lithium peroxide in the lithium-air battery. Physical Review B, 2011, 84(20): 205446-1-9. |
[28] | WEAVER J F, CHEN J J, GERRARD A L.Oxidation of Pt(111) by gas-phase oxygen atoms.Surface Science, 2005, 592(1/2/3): 83-103. |
[29] | PHATAK A A, DELGASS W N, RIBEIRO F H, et al Density functional theory comparison of water dissociation steps on Cu, Au, Ni, Pd, and Pt. The Journal of Physical Chemistry C, 2009, 113(17): 7269-7276. |
[30] | WU C, SCHMIDT D J, WOLVERTON C,et al. Accurate coverage-dependence incorporated into first-principles kinetic models: catalytic NO oxidation on Pt(111). Journal of Catalysis, 2012, 286: 88-94. |
[31] | TODOROVA M, REUTER K, SCHEFFLER M. Density- functional theory study of the initial oxygen incorporation in Pd (111). Physical Review B, 2005, 71(19): 195403-1-8. |
[32] | REN X, ZHU J, DU F, et al. B-doped graphene as catalyst to improve charge rate of lithium air battery. Journal of Physical Chemistry C, 2014, 118(39): 22412-22418. |
[1] | CHAO Shaofei, XUE Yanhui, WU Qiong, WU Fufa, MUHAMMAD Sufyan Javed, ZHANG Wei. Efficient Potassium Storage through Ti-O-H-O Electron Fast Track of MXene Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(11): 1212-1220. |
[2] | REN Guanyuan, LI Yiguan, DING Donghai, LIANG Ruihong, ZHOU Zhiyong. CaBi2Nb2O9 Ferroelectric Thin Films: Modulation of Growth Orientation and Properties [J]. Journal of Inorganic Materials, 2024, 39(11): 1228-1234. |
[3] | XIE Tian, SONG Erhong. Effect of Elastic Strains on Adsorption Energies of C, H and O on Transition Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(11): 1292-1300. |
[4] | ZHANG Zhe, SUN Tingting, WANG Lianjun, JIANG Wan. Flexible Thermoelectric Films with Different Ag2Se Dimensions: Performance Optimization and Device Integration [J]. Journal of Inorganic Materials, 2024, 39(11): 1221-1227. |
[5] | TAO Shunyan, YANG Jiasheng, SHAO Fang, WU Yingchen, ZHAO Huayu, DONG Shaoming, ZHANG Xiangyu, XIONG Ying. Thermal Spray Coatings for Aircraft CMC Hot-end Components: Opportunities and Challenges [J]. Journal of Inorganic Materials, 2024, 39(10): 1077-1083. |
[6] | JIANG Qiang, SHI Lizhi, CHEN Zhengran, ZHOU Zhiyong, LIANG Ruihong. Preparation and Properties of Hard PZT Piezoelectric Ceramics Poled above Curie Temperature and Multilayer Actuators [J]. Journal of Inorganic Materials, 2024, 39(10): 1091-1099. |
[7] | PENG Ping, TAN Litao. Structure and Piezoelectric Properties of CuO-doped (Ba,Ca)(Ti,Sn)O3 Ceramics [J]. Journal of Inorganic Materials, 2024, 39(10): 1100-1106. |
[8] | WANG Bo, CAI Delong, ZHU Qishuai, LI Daxin, YANG Zhihua, DUAN Xiaoming, LI Yanan, WANG Xuan, JIA Dechang, ZHOU Yu. Mechanical Properties and Thermal Shock Resistance of SrAl2Si2O8 Reinforced BN Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(10): 1182-1188. |
[9] | SHI Rui, LIU Wei, LI Lin, LI Huan, ZHANG Zhijun, RAO Guanghui, ZHAO Jingtai. Preparation and Properties of BaSrGa4O8: Tb3+ Mechanoluminescent Materials [J]. Journal of Inorganic Materials, 2024, 39(10): 1107-1113. |
[10] | CHEN Mengjie, WANG Qianqian, WU Chengtie, HUANG Jian. Predicting the Degradability of Bioceramics through a DFT-based Descriptor [J]. Journal of Inorganic Materials, 2024, 39(10): 1175-1181. |
[11] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[12] | YANG Jialin, WANG Liangjun, RUAN Siyuan, JIANG Xiulin, YANG Chang. Highly Weak-light Sensitive and Dual-band Switchable Photodetector Based on CuI/Si Unilateral Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(9): 1063-1069. |
[13] | WANG Xu, LI Xiang, KOU Huamin, FANG Wei, WU Qinghui, SU Liangbi. Effect of Doping with Different Concentrations of Y3+ Ions on the Properties of CaF2 Crystals [J]. Journal of Inorganic Materials, 2024, 39(9): 1029-1034. |
[14] | XUN Daoxiang, LUO Xuwei, ZHOU Mingran, HE Jiale, RAN Maojin, HU Zhiyi, LI Yu. ZIF-L Derived Nitrogen-doped Carbon Nanosheets/Carbon Cloth Self-supported Electrode for Lithium-selenium Battery [J]. Journal of Inorganic Materials, 2024, 39(9): 1013-1021. |
[15] | CHEN Jia, FAN Yiran, YAN Wenxin, HAN Yingchao. Polyacrylate-calcium (cerium) Nanocluster Fluorescent Probes for Quantitative Detection of Inorganic Phosphorus [J]. Journal of Inorganic Materials, 2024, 39(9): 1053-1062. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1046
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 658
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||