优秀作者论文集锦
根据Web of Science平台上的所有数据库检索结果,以及Scopus数据库检索结果,初步筛选出2020年度《无机材料学报》优秀作者名单,现将他们的作品汇总成虚拟专题.
随着可再生能源及能源转换技术的快速发展, 热电材料在发电及制冷领域的应用前景受到越来越广泛的关注。发展具有高热电优值材料的重要性日益突出, 如何获得低晶格热导率是热电材料的研究重点之一。本文阐述了热容、声速及弛豫时间对晶格热导率的影响, 介绍了本征低热导率热电材料所具有的典型特征, 如强非谐性、弱化学键、本征共振散射及复杂晶胞结构等, 并分析了通过多尺度声子散射降低已有热电材料晶格热导率的方法, 其中包括点缺陷散射、位错散射、晶界散射、共振散射、电声散射等多种散射机制。此外, 总结了几种预测材料最小晶格热导率的理论模型, 对快速筛选具有低晶格热导率的热电材料具有一定的理论指导意义。最后, 展望了如何获得低热导率热电材料的有效途径。
热电发电技术在特种电源、绿色能源、环境能量收集与工业余热发电等领域具有重要的应用价值。近年来, 热电材料zT值的纪录不断被刷新, 为热电器件应用技术的发展奠定了坚实的基础。然而, 目前热电应用技术远滞后于热电材料科学的发展, 特别是热电发电技术的大规模应用仍面临着技术瓶颈和挑战。本文介绍了热电器件设计与集成的基本原理及其关键科学与技术问题, 着重总结了器件集成中的界面结构设计与优化、电极连接与器件一体化制备技术、器件服役性能与寿命评价等方面的最新研究进展。同时, 分析和展望了热电发电技术规模化应用面临的挑战与发展策略。
近年来, 三元层状碳氮化合物(MAX相)及其衍生二维纳米材料MXene受到了科学界的广泛关注。MAX相的晶体结构由Mn+1Xn结构单元与A元素单原子面交替堆垛排列而成, 兼具金属和陶瓷的诸多优点, 在高温结构材料、摩擦磨损器件、核能结构材料等领域有较大的应用潜力。MAX相的A层原子被刻蚀之后获得成分为Mn+1XnTx(Tx为表面基团)的二维纳米材料, 即MXene, 具有丰富的成分组合以及可调谐的物理化学性质, 在储能器件、电磁屏蔽、电子器件等领域表现出良好的应用前景。本文简要介绍近年来国内外MAX相和MXene材料领域在成分与结构、合成方法、性能与应用研究等方面的研究动态, 据此展望未来几年该类新颖材料的发展方向。
高熵陶瓷是一种新兴的近等摩尔多组元单相固溶体陶瓷材料, 特别是过渡金属碳化物、过渡金属硼化物等过渡金属非氧化物高熵陶瓷体系, 其具有超高硬度、低热导和抗腐蚀等优异的理化性能, 在航空航天、核能和高速切削加工等极端环境有着广阔的应用前景。目前, 高熵陶瓷材料研究尚处于起步阶段, 主要集中在成分设计、制备方法、单相形成能力和力学性能评价等方面, 设计依据和理论方面的研究还相对较少。本文从高熵效应和高熵合金出发, 综述了过渡金属非氧化物高熵陶瓷的制备、表征和理论研究进展, 同时介绍了部分相关的高熵陶瓷涂层研究现状, 总结并展望了非氧化物高熵陶瓷的未来前景和发展方向。
MAX相材料是一类兼具金属和陶瓷特性的三元层状材料, 在高温导电、耐磨、耐腐蚀和耐辐照损伤等方面性能优异。目前已经合成出的MAX相材料已有70余种, 但A位元素一直局限在ⅢA和ⅣA主族元素, 如Al、Si、Ga等, 而以副族元素占据A位的MAX相鲜有报道。本研究以Ti3AlC2为前驱体, 利用熔盐中的A位置换反应, 制备出了A位为Zn元素的全新MAX相材料Ti3ZnC2。结合X射线衍射、扫描电子显微镜和透射电子显微镜等分析手段对Ti3ZnC2的成分和结构进行了确认, 并通过密度泛函理论对Ti3ZnC2的结构稳定性和晶格参数进行了确定。进一步通过热力学计算对Fe、Co、Ni、Cu等几种元素的A位置换反应进行了预测, 发现采用这几种元素的氧化物进行置换反应在热力学上也都具有可行性。本研究所提出的元素置换策略是在保持MAX相六方层状晶体结构的基础上, 利用Al、Zn在高温下形成共晶产物实现Zn原子向A层内的迁移, 而熔盐介质的存在促进了反应动力学。本方法巧妙地避免了MAX相传统合成过程中竞争相的形成, 如M-A合金相, 因此可以用于探索更多未知的MAX相材料。
磁光材料是指从紫外到红外波段具有磁光效应的光功能材料, 按照材料的类型可将其分为磁光玻璃、磁光晶体、磁光透明陶瓷等。其中, 磁光透明陶瓷是近年来出现的一种新型磁光介质材料, 具有高Verdet常数、大尺寸、高热导率、高激光损伤阈值等优点, 因而是用于高功率激光器中法拉第隔离器最理想的材料之一。目前已经报道的磁光透明陶瓷材料主要包括铽镓石榴石(Tb3Ga5O12, TGG)陶瓷、铽铝石榴石(Tb3Al5O12, TAG)陶瓷以及一些倍半氧化物陶瓷, 如氧化铽(Tb2O3)陶瓷、氧化钬(Ho2O3)陶瓷、氧化镝(Dy2O3)陶瓷等。本文首先介绍了几种常见的磁光效应, 详细阐述了法拉第效应和克尔效应的基本原理。着重对几种磁光透明陶瓷材料的研究进展、材料性能、应用前景进行了综述和介绍, 并对这几种磁光透明陶瓷的性能进行了比较和分析, 指出了它们存在的问题和今后的研究方向。
石墨相氮化碳材料作为一种重要的二维层状材料, 在光催化、能源存储和环境污染治理等领域引起了广泛关注。氮化碳基复合材料以其稳定的物理化学性质、低成本和环境友好等特点成为不同领域的研究热点。在过去几年中, 氮化碳及其氮化碳基复合材料的制备、性质表征和不同领域应用取得了重要进展。本文总结了近几年氮化碳基复合材料的制备及掺杂和功能化研究, 及其在重金属离子废水中的去除应用, 以及不同研究方法对吸附机理的分析。最后还总结了氮化碳基材料在未来研究和应用中面临的主要问题、挑战和机遇。
核能利用的过程中, 从铀矿开采、核燃料加工、核能发电到乏燃料后处理, 会产生大量放射性废物, 部分放射性核素会不可避免的释放到环境中, 对环境和人类健康造成重大危害。放射性核素的高效去除是核电健康发展的重要关键科学问题之一。近年来, 高化学稳定性、具有大量功能基团而且结构可调的多孔金属有机骨架材料(MOFs)在放射性污染治理方面受到国内外同行的高度关注。本文系统地介绍了MOFs及MOFs复合材料在放射性核素吸附去除方面的研究进展, 通过宏观吸附、模型分析、先进光谱表征和理论计算四个方面描述放射性核素与MOFs材料的界面作用机理, 并对MOFs材料的吸附性能与其它材料进行对比, 评价MOFs材料在放射性污染治理中的应用前景。
二维过渡金属碳化物(MXenes)具有良好的电化学性能与辐照稳定性, 其在放射性核素电化学检测领域有潜在应用价值。本研究通过碱活化的方式处理碳化钛型MXene(Ti3C2Tx), 随后将钾插层的Ti3C2Tx(K-Ti3C2Tx)负载到玻碳电极(GCE)上得到K-Ti3C2Tx/GCE修饰电极。采用XRD、SEM、XPS等手段分别对Ti3C2Tx和K-Ti3C2Tx进行分析表征, 并进一步研究了K-Ti3C2Tx/GCE对痕量铀酰离子(UO22+)的电化学检测性能。循环伏安(CV)实验结果表明, 相比于GCE电极, K-Ti3C2Tx/GCE修饰电极对UO22+的电化学响应显著增强。进一步使用差分脉冲伏安法(DPV)扫描, 发现pH=4.0时, K-Ti3C2Tx/GCE修饰电极对UO22+在铀浓度0.5~10 mg/L范围内呈现良好的线性检测关系, 本方法的检测限为0.083 mg/L(S/N=3), 稳定性和重复性好。
氧还原反应缓慢的动力学过程严重限制了燃料电池的能量转换效率, 而商用Pt/C催化剂成本太高、资源稀缺、稳定性差, 需要寻找合适的材料来取代商用的Pt/C催化剂。近年来, 氮掺杂多孔碳材料因其独特的物理和化学特性吸引了大量的关注。本文使用富含氮元素的可再生土豆作为生物质前驱体, 通过简单的一步热解过程和KOH活化方法相结合制备出了一系列氮掺杂多孔碳电催化剂; 并系统研究了KOH用量和活化温度对碳基体孔结构和电催化性能的影响。结果表明, 当活化温度为750 ℃、KOH与碳的质量比为3/1时, 所制备的催化剂(NPC-750)的氧还原活性最高, 起始电位和半波电位分别达到0.89和0.79 V (vs. RHE), 极限电流密度达到5.53 mA?cm -2。NPC-750优异的氧还原催化活性主要归因于其发达的孔结构、高的比表面积(1134.2 m 2?g -1)和合适的氮含量(1.57at%)。同时, 优异的循环稳定性和抗甲醇中毒性能进一步说明这些生物多孔碳材料是潜在的低成本氧还原电催化剂。此外, 这些高比表面积多孔碳在超级电容、吸附/分离、催化以及电池等领域也具有潜在的应用前景。
随着人类现代化进程的加快和社会经济的飞速发展, 传统能源消耗不断加快, 气候变化问题日益凸显。现代工业特别是化学工业的发展在给人们带来便利的同时, 也给与人类生活息息相关的生态环境带来了前所未有的改变, 导致环境问题成为当今世界面临的巨大挑战。为了更好地应对挑战, 保护我们赖以生存的家园, 广大科研工作者不断寻求和探索绿色环保并能高效利用的新材料与新技术, 着力解决日益严峻的环境污染问题。在这种形势下, 新型环境材料与技术受到了广泛重视并得到迅猛发展。
环境材料, 顾名思义, 是针对环境问题而设计发展的材料。环境问题的核心是环境污染, 当前人们密切关注的环境污染物包括气体污染物、持久性有机污染物和重金属污染物等。近年来随着核工业的崛起和发展, 放射性污染物也日益受到重视。通过不同手段对环境中的这些污染物进行分离去除是环境污染治理的主要方法。在过去几十年间, 研究人员不断开发出去除特定污染物的新材料。这些材料种类繁多, 结构多样, 性能各异。研究较多的包括传统的分子筛[1], 矿物材料[2], 以石墨烯、碳纳米管为代表的碳材料[3], 树脂等高分子材料[4], 以及近年来颇受学者重视的金属有机框架材料(MOFs)[5]和共价有机框架材料(COFs)等[6]。在这些材料当中, 无机材料以其稳定性好、廉价易得和对环境友好等特点, 在环境污染物的去除分离领域具有广阔的应用前景, 尤其是无机纳米多孔材料近年来备受青睐。纳米尺寸使得材料不仅具有量子尺寸效应, 而且比其它普通材料具有更大的比表面和较多的表面原子, 表现出吸附能力强、在水中分散性好等不同于一般材料的独特性质。多孔性在大幅度提高材料的比表面积、增加材料与污染物接触面的同时, 还可加快污染物在材料内部的扩散和传输, 使得这类材料在吸附应用中更具潜力和优势。金属纳米材料、金属氧化物纳米材料、矿物材料等都是无机纳米材料家族的典型代表。
从已有文献来看, 提高污染物去除的效率和选择性一直是无机环境材料领域的研究热点和努力方向。与有机材料相比, 无机材料虽然具有更高的稳定性, 但是通常对污染物去除效率偏低和选择性不佳, 这主要是因为无机材料表面缺少活性功能基团。为了克服这一缺点, 常规做法是对无机材料进行功能化修饰。将对目标污染物具有强结合能力的功能基团通过物理或化学手段修饰在材料表面[7], 以提高其对污染物的去除能力。在提高选择性方面, 除了在材料表面修饰特异性识别基团[8]外, 调节材料的孔道结构, 利用尺寸效应物理筛分污染物[9]也是常用和有效方法。或者通过分子印迹、复合等手段将尺寸效应、键合作用以及静电作用等有机结合起来以提高对目标污染物的选择性[10]。此外, 除了改善分离效率和选择性, 发展在高酸、高碱、高温等苛刻条件下应用的无机环境材料近年来也逐渐成为研究热点[11]。
总而言之, 经过几十年的发展, 无机环境材料研究已经取得了显著进展, 但为了更好地解决日益严峻的环境问题, 仍然需要广大材料研究者们攻坚克难, 不懈努力。
半导体光催化技术具有低能耗和环境友好等优点, 在众多氮氧化物去除技术中具有较大的发展潜力。本研究在室温下成功制备了碳酸氧铋(Bi2O2CO3, BOC)/聚吡咯(PPy)光催化剂, 并在可见光下对一氧化氮(NO)进行光催化氧化去除。可见光催化NO氧化性能测试结果表明, BOC复合PPy之后, 其NO去除率从9.4%提高到20.4%, 毒副产物NO2的生成率从2%降到接近零。这是因为在BOC和PPy界面氢键作用下, 在BOC和PPy界面形成了氧空位。光电流和交流阻抗测试表明氧空位的形成改善了BOC光生载流子分离和迁移过程, 从而提高其光催化活性。此外, BOC/PPy光催化氧化NO机理分析表明, 氧空位促进O2生成更多的•O2 -, 进而与•OH共同作用, 提高BOC的NO氧化反应活性和安全性。
本实验成功制备了氮掺杂碳酸氧铋(N-Bi2O2CO3, N-BOC)/硒化镉量子点(CdSe QDs)复合光催化剂, 并将其运用于光催化降解室内空气污染物一氧化氮(NO)。X射线衍射、透射电子显微镜和光电子能谱测试结果表明N-BOC光催化剂在保持原有纳米片结构和形貌的基础上成功负载了CdSe QDs。光催化氧化NO实验结果显示CdSe QDs的引入可显著提高N-BOC的NO去除率, 并且二次毒副产物NO2生成率大幅度降低至1%, 表明复合光催化剂具有极强的毒副产物抑制特性。固体紫外漫反射吸收光谱和发光光谱测试表明CdSe QDs拓宽并提升了N-BOC的光响应范围和能力, 并有效抑制了光生电子-空穴的复合效率。通过原位漫反射傅里叶变换红外光谱技术(DRIFTS)分析, 发现在N-BOC/CdSe QDs光催化氧化NO反应过程中没有NO2信号产生, 仅观测到NO3 -相关信号。机理分析表明超氧自由基(O2 -)和光生空穴(h +)是体系中可能存在的活性物种, 实现了对NO到NO3 -的彻底氧化。
合适的树脂基陶瓷浆料的制备对陶瓷光固化成型技术而言至关重要。本文研究了氧化锆粉体的性质, 包括比表面积、粒度与粒径分布、颗粒形貌等因素对树脂基浆料流变行为的影响。研究发现: 粉体的比表面积是影响浆料粘度的最主要因素。选择低比表面积、形貌接近球形的粉体更容易制备出低粘度的浆料。利用Krieger-Dougherty模型研究了粉体固含量对浆料流变行为的影响。在1550 ℃烧结得到了相对密度为(97.83±0.33)%的氧化锆陶瓷, 未发现明显的晶粒异常长大, 表明基于流变学表征方法对浆料制备参数进行优化后, 采用光固化技术可以制备出复杂结构、高质量的氧化锆陶瓷。
ZnO纳米材料异质结是构筑高性能紫外光电探测器的有力候选之一。本工作中, 设计并制备了一种新型ZnO纳米棒/ZnCo2O4纳米片异质结, 研究了其电学性能及光电探测性能。使用油水界面自组装, 将ZnCo2O4纳米片在ITO玻璃上组装为均匀的薄膜; 通过调控ZnO种子层厚度, 在ZnCo2O4纳米片薄膜上水热生长了取向一致、密度适中的ZnO纳米棒阵列, 获得了高质量的ZnO纳米棒/ZnCo2O4纳米片异质结。该异质结具有优良的整流特性, 整流比达到673.7; 其工作在反偏状态时, 光暗电流比超过2个量级, 紫外-可见判别比为29.4, 在光电探测中有良好的波长选择特性。研究表明, 该异质结有潜力应用于构筑高性能紫外光电探测器。
本工作采用真空热压烧结的方法, 研究Mo2Ga2C粉体的烧结性能, 制备致密的Mo2Ga2C块体材料, 并且表征所制备材料的微观结构。实验发现750 ℃是合适的烧结温度, 过高的烧结温度(850 ℃)会导致样品分解, 主要产物为Mo2C。在750 ℃烧结过程中, 随着烧结时间的延长, 样品的晶粒没有明显长大, 但是样品内部空隙显著变小, 内部织构增强, 相对密度明显提高。因为Mo2Ga2C晶体的片状结构, 热压烧结过程中, 部分片状晶粒会偏转, 导致烧结样品的多数晶粒的(00l)晶面会倾向垂直于热压方向。在750 ℃烧结8 h, 可以得到几乎完全致密(相对密度98.8%)的Mo2Ga2C块体材料。
随着核电的发展, 放射性污染物流入环境, 污染水土资源。纳米零价铁(nZVI)材料因还原性强、去除效率高等优势, 被广泛应用于水资源污染修复。本研究以海藻酸钠(SA)为碳源, 采用一步碳热还原法制备碳载零价铁(Fe-CB)材料, 并将其用于水溶液中放射性核素U(Ⅵ)的去除。采用微观光谱和宏观实验研究Fe-CB对U(Ⅵ)的吸附性能和作用机理。研究发现Fe-CB具有丰富的官能团(如-OH和-COOH)及较高的比表面积, 弥补了纳米零价铁(nZVI)分散性差和去除效果低的不足。在298 K时, Fe-CB对U(Ⅵ)的吸附去除在3 h内达到平衡, 最大吸附量为77.3 mg·g -1, 是能够自发进行的化学吸附。X射线光电子能谱分析仪(XPS)分析发现Fe-CB对U(Ⅵ)的去除主要是通过吸附和还原的协同作用来实现的, 吸附过程是U(Ⅵ)与Fe-CB发生表面络合, 还原过程是通过零价铁的还原性将U(Ⅵ)还原成U(Ⅳ)。研究结果表明Fe-CB材料可作为优良的吸附剂, 在环境污染治理领域具有良好的应用前景。
本研究以空腔细胞组成的栓皮栎为原料, KOH为活化剂制备了具有多孔结构的栓皮栎软木基多孔活性炭。以此方法制得的活性炭呈薄片状外形, 最大比表面积达到2312 m 2/g, 具有特殊的微孔-介孔结构。在呈碱性的KOH三电极体系中, 0.1 A/g电流密度时比电容达296 F/g; 两电极体系中, 5 A/g时的比电容达到201 F/g, 循环5000次后电容保持率达99.5%。在呈中性的Na2SO4两电极体系中, 电流密度0.5 A/g (174 F/g)至50 A/g (140 F/g)时电容保持率达80.5%, 倍率性能良好, 能量密度高达19.62 Wh/kg。
对无机二维过渡金属碳化物(MXene)进行碱化处理, 成功制备了碱化碳化钛(Na-Ti3C2Tx), 用于对Eu(III)的快速去除。采用固液比、溶液pH和离子强度、动力学、等温线、热力学等批次实验方法对Na-Ti3C2Tx去除Eu(III)的行为进行了系统研究。实验结果表明: 整个吸附过程受溶液pH和离子强度影响较大, 吸附过程在很短的时间(5 min)就达到了吸附平衡, 该过程更符合Langmuir吸附模型, 在298 K时最大吸附容量可达54.05 mg/g。热力学结果表明Na-Ti3C2Tx对Eu(III)的吸附为自发吸热反应过程。使用能量色散X射线光谱(EDS)、粉末XRD和扩展X射线吸收精细结构光谱学(EXAFS)对其吸附机理进行了分析, 结果表明酸性条件下主要的吸附机理是Eu 3+离子与MXene层间的Na +离子发生了离子交换, 吸附后的Eu(III)主要以外层配位络合物的形式存在, 而近中性条件下则出现了内配位络合作用。鉴于Na-Ti3C2Tx具有较低的合成成本与优异的吸附性能, 该材料有望应用于放射性废水中三价次锕系核素与镧系核素的快速高效清除。
三维打印结合高分子前躯体制备生物陶瓷材料由于制备工艺简单, 在骨组织工程修复领域引起了极大的关注。本文成功利用三维打印技术与高分子硅胶前躯体结合, 通过填充活性CaCO3和惰性ZrO2制备出ZrO2掺杂的β-Ca2SiO4支架。制备得到的支架具有均一、连通的大孔结构(孔隙率>67%), 随着掺杂ZrO2含量的增加, 支架的抗压强度明显提高, 并且促进成骨细胞增殖、分化。重要的是在动物体内实验发现, 相较于纯的β-Ca2SiO4支架, ZrO2的掺入明显提高了支架在骨缺损处促进新骨形成的能力。因而, 通过三维打印结合高分子前躯体技术制备掺杂ZrO2的β-Ca2SiO4支架有望应用于骨组织工程。
碳化硅陶瓷因自身优良的物理化学性能而具有广泛的应用前景。碳化硅的化学键结合特性决定了其难以烧结成型, 因此如何制备高质量碳化硅陶瓷是领域内的难点之一。本研究以三元稀土碳化物Dy3Si2C2作为新型SiC陶瓷的烧结助剂, 依据Dy-Si-C体系的高温相转变原位促进碳化硅的烧结致密化。采用放电等离子烧结技术, 利用金属Dy与SiC反应生成Dy3Si2C2, 对Dy3Si2C2包裹的SiC粉体进行烧结。在1800 ℃、45 MPa的烧结条件下, 得到了致密度为99%、热导率为162.8 W·m -1·K -1的高纯度碳化硅陶瓷。进一步的研究表明, 高温下Dy3Si2C2与SiC发生共晶反应, 在晶界处产生的液相促进了SiC陶瓷的致密化, 表明稀土层状碳化物Re3Si2C2 (Re=La, Ce…)有助于SiC的烧结致密。
本研究以碳酸氢铵(AHC)为沉淀剂, 采用共沉淀法制备了TGG粉体。以上述粉体为原料, 将素坯于1500 ℃空气预烧3 h, 然后于1550 ℃, 150 MPa氩气气氛下HIP后处理3 h获得TGG陶瓷。系统研究了碳酸氢铵与金属离子摩尔比(R值)对合成粉体的相组成、形貌以及TGG陶瓷的透光率和Verdet常数的影响。R=3.6, 4.0和4.4的前驱体在1100 ℃煅烧形成纯相TGG粉体, 而R=3.2的前驱体经相同温度煅烧后形成了TGG和Ga2O3的混合相粉体。R=4.0的TGG粉体分散性和均匀性最好, 故制备的陶瓷光学质量最佳。R=4.4的粉体具有较严重的团聚, 这与其前驱体形貌密切相关。以R=4.0的粉体为原料, 制备的TGG透明陶瓷在1064 nm处的直线透过率为80.1%。制备的TGG陶瓷在633 nm处的Verdet常数和商业TGG单晶(-134 rad·T -1·m -1)几乎相等。
利用共沉淀法合成的粉体, 通过真空烧结结合热压烧结后处理制备了掺镱的氟化钙透明陶瓷(Yb:CaF2)。在600 ℃预烧1 h, 700 ℃热压烧结2 h制备的5at%Yb:CaF2透明陶瓷在1200 nm处的直线透射率达到92.0%。对陶瓷的显微结构、光谱特性和激光性能进行了测试和讨论。研究结果表明, 陶瓷样品的显微结构均匀, 平均晶粒尺寸为360 nm。此外, 计算得到Yb:CaF2陶瓷在977 nm处的吸收截面和1030 nm处的发射截面分别为0.39×10 -20和0.26×10 -20cm 2。最后, 对Yb:CaF2陶瓷激光性能进行了表征, 得到最大输出功率为0.9 W, 最大斜率效率为23.6%。