白光LEDs(White Light-Emitting Diodes, WLEDs)作为一种新型的固体照明光源, 相对于已有光源(白炽灯、荧光灯等)具有发光效率高、响应速度快、寿命长等优势, 在照明和显示领域有着广阔的应用前景。目前获取WLEDs最常用的方法是蓝光LED芯片激发YAG : Ce 3+黄光荧光粉以及紫外-近紫外芯片激发三基色荧光粉(RGB混合荧光粉), 相比于以上两种方式, 单基质WLEDs荧光粉由于能克服传统RGB荧光粉颜色再吸收及配比调控的问题, 获得较高的流明效率及较高色彩还原性而受到越来越多的关注。目前关于单基质白光荧光的研究已有大量文献报道, 涉及多种材料体系, 按照发光原理的不同, 可以将其地简单分为单离子激发体系、多离子激发体系以及不依赖于稀土离子发光的其他体系等。本文综述了单基质WLEDs荧光粉的研究进展, 指出了其发展中存在的问题, 并对未来发展趋势作了展望。
金刚石因其独特的物理化学性质, 在探测器、光电子器件等领域得到了广泛的应用, 单晶金刚石更是因为具有大幅度提高这些器件功能的潜力而引起了众多学者的关注。目前在铱(Ir)衬底上异质外延生长的单晶金刚石具有最大尺寸和较为优异的生长质量。本文介绍了可用于外延金刚石的不同结构的衬底以及金刚石在铱(Ir)衬底上的形核和生长过程, 重点阐述了金刚石偏压辅助形核(BEN)和外延横向生长(ELO)的机理, 以及衬底图形化形核生长技术, 指出了目前研究存在的不足, 并对金刚石异质外延理论和实验研究方向进行了展望。
本论文基于硅铬共掺杂, 合成得到了一种尖晶石长余辉材料Zn1+xGa2-2xSixO4:Cr 3+。实验采用高温固相法, 按照设计的化学计量比精确称量ZnO、Ga2O3、SiO2和Cr2O3等原料, 制备了一系列硅铬共掺杂的镓酸锌尖晶石长余辉材料, 其化学式为Zn1+xGa2-2xSixO4:Cr 3+(x=0, 0.1, 0.15, 0.2, 0.5, 1)。实验结果表明: 采用硅铬共掺杂方式后, 引入合适浓度的硅离子可有效改善余辉性能。当x=0.2时, 样品余辉强度最佳, 相比ZnGa2O4:Cr 3+增强了3倍, 并且余辉持续时间长达24 h。进一步的陷阱分布分析表明, 在ZnGa2O4基质基础上引入硅掺杂, 可有效调控不同陷阱深度的分布。即在丰富的反位缺陷基础上, 硅的共掺杂可增加不等价替换缺陷和填隙缺陷等, 并可调控禁带宽度及缺陷形成, 从而实现改善余辉性能的目的。
采用固相法制备了Ce 3+掺杂的Na0.5Bi8.5-xCexTi7O27(NBT-BIT-xCe, 0≤x≤0.1)共生铋层状无铅压电陶瓷, 研究了NBT-BIT-xCe陶瓷的结构和电学性能。研究结果表明所有陶瓷样品均为单一的铋层状结构, 随Ce 3+掺杂量的增加, 样品的畸变程度呈现上升趋势, 同时陶瓷晶粒的平均尺寸不断减小, 介温谱和差热分析结果表明样品的介电双峰均对应于陶瓷内部结构的铁电相变。Ce 3+掺杂可以显著减少陶瓷内部的氧空位浓度以及降低陶瓷的介电损耗, 提升陶瓷的压电常数(d33), 当x=0.06时, 陶瓷的综合电性能最佳: 压电常数(d33)达到27.5 pC/N, 居里温度(TC)达到658.2 ℃, 介电损耗(tanδ)为0.39%。
电卡效应是极性材料中极化强度和温度的相互作用, 具有电卡效应的铁电陶瓷材料在高效固态制冷领域有很好的应用前景。本研究以Pb0.3CaxSr0.7-xTiO3 [PCST(x), x = 0.00, 0.05, 0.10, 0.15]陶瓷为对象, 系统研究了在电场作用下Ca含量对材料介电性能和铁电性能的影响, 并通过间接法计算了不同温度下材料的电卡温变。研究结果显示: Ca含量可显著调控PCST陶瓷的弥散相变特性, PCST(0.05)的相变弥散因子随外加电场的增大而增大, 可利用弥散相变在较宽温度区间内获得较大的电卡效应。经计算可得: PCST(0.05)在室温下可产生1.71 K的温变。当电场为8 kV/mm时, PCST(0.05)陶瓷在5~70 ℃的温度范围内, 绝热温变均大于1 K, 表现出优异的电卡效应。
可见光激光在数据存储、光通讯、激光显示、激光医疗、激光打印以及科学研究等领域具有非常重要的应用价值。随着蓝光LD泵浦源的商用化, 直接泵浦稀土离子掺杂激光晶体实现可见光激光输出吸引了人们极大的研究兴趣。目前, 可见光稀土离子主要集中在Pr 3+、Dy 3+、Tb 3+和Sm 3+等。其中, Pr 3+的研究较多, 发光波长涵盖面较广, 发射波段覆盖蓝光、绿光、红光、橙光; Dy 3+和Tb 3+因为能够发射黄光以填补Pr 3+的不足也吸引了广泛的研究; 此外, Sm 3+和Eu 3+也是典型的可见波段稀土发光离子。本文综述了近几年可见波段稀土离子掺杂激光晶体的研究现状, 主要以Pr 3+、Dy 3+、Tb 3+和Sm 3+掺杂YAlO3 (YAP)、Mg : SrAl12O19 (SRA)等晶体为研究对象, 总结了一套适合Pr 3+掺杂材料的判据, 对晶体生长、结构、热学性能、偏振光谱性能和激光性能进行了系统的研究。
石墨烯具有超高的比表面积和优异的力学性能, 是铜基复合材料理想的增强体。传统的粉末冶金工艺很难解决石墨烯在铜基体中的分散问题, 以及石墨烯与铜基体结合性差的难题。随着近些年研究者对石墨烯-铜界面问题深入的探索, 一些新的制备工艺不断出现。本文系统地介绍和对比了近几年石墨烯增强铜基复合材料的制备工艺, 概述了关于石墨烯/铜复合材料力学性能的研究进展, 总结了石墨烯增强铜基复合材料力学性能的机理, 并对未来石墨烯增强铜基复合材料的研究重点进行了展望。
硅的理论嵌锂比容量是石墨材料比容量的十倍以上, 脱锂电位低, 资源丰富, 倍率特性较好, 故高比能量的硅基材料成为了电动汽车?可再生能源储能系统等领域的研究热点?但由于其在脱嵌锂过程中巨大的体积膨胀效应会导致硅电极材料粉化和结构崩塌, 并且在电解液中硅表面重复形成的固相电解质层(SEI)使极化增大?库伦效率降低, 最终导致电化学性能的恶化?为了解决上述问题, 加快实现硅基电极的商业化应用, 本文系统总结了通过硅基材料的选择和结构设计来解决充放电过程中体积效应的工作, 并深入分析和讨论了具有代表性的硅基复合材料的制备方法?电化学性能和相应机理, 重点介绍了硅碳复合材料和SiOx(0<x≤2)基复合材料?最后对硅基负极材料存在的问题进行了分析, 并展望了其研究前景?
热电材料是一种新型能量转换材料, 在温差发电或通电制冷等领域具有广泛应用。热电优值ZT值是衡量热电材料能量转换效率的关键参数, ZT值要求热电材料具有优异的电输运性能及较低的热导率。传统第一性原理热电材料研究往往关注少量样本下的电热输运性质理解与优化, 很难得到系统性的规律, 也不利于新体系的设计优化。材料基因组计划力求通过大数据、高通量手段去加速材料设计与发现, 具有广阔的发展前景。在热电材料研究领域, 第一性原理高通量计算也将在新材料预测与性能优化等方面起到越来越重要的作用。另一方面, 高通量研究也带来了新的挑战, 譬如电热输运性质的高通量算法发展、大数据分析手段等等, 这些方面的问题决定了高通量方法在材料应用中的效率与准确性。本文综述了热电材料中现有的电热输运性质高通量计算方法, 介绍了这些方法具体的应用案例, 并对高通量与热电材料结合的未来发展趋势进行了展望。
高通量材料实验旨在利用较少的实验次数快速获得成分-物相-结构-性能之间关系, 筛选出组分最优的材料体系, 目前已在超导材料、荧光材料以及巨磁阻材料等方面有较多应用。热电材料是可以实现热能和电能直接相互转换的功能材料, 在温差发电和废热利用等领域有着重要的应用价值, 但热电材料的传统实验制备与表征方法存在着实验周期长和效率低等问题。因此, 将高通量实验的方法和理念引入新型热电材料的研发和优化具有重要的理论和实际意义。本文主要总结和梳理了现有在热电材料实验研究中具有较好应用前景的高通量实验制备与表征技术, 包括高通量样品制备、成分-结构高通量表征、电-热输运性能高通量表征等, 并分析了各高通量实验技术在实验热电材料研究中的优势和局限性, 希望为今后热电材料高通量实验优化和筛选提供一定的参考。
随着可再生能源及能源转换技术的快速发展, 热电材料在发电及制冷领域的应用前景受到越来越广泛的关注。发展具有高热电优值材料的重要性日益突出, 如何获得低晶格热导率是热电材料的研究重点之一。本文阐述了热容、声速及弛豫时间对晶格热导率的影响, 介绍了本征低热导率热电材料所具有的典型特征, 如强非谐性、弱化学键、本征共振散射及复杂晶胞结构等, 并分析了通过多尺度声子散射降低已有热电材料晶格热导率的方法, 其中包括点缺陷散射、位错散射、晶界散射、共振散射、电声散射等多种散射机制。此外, 总结了几种预测材料最小晶格热导率的理论模型, 对快速筛选具有低晶格热导率的热电材料具有一定的理论指导意义。最后, 展望了如何获得低热导率热电材料的有效途径。
基于塞贝克效应的热电转换技术, 在大量分散的低品位废热转换电能方面有着不可替代的优势。以热电优值ZT为性能指标的热电材料研发成为新能源材料领域研究的热点之一。近年来, 大量新型中温热电材料被相继发现, 然而新型热电材料的产业化应用, 尤其是在温差发电方面的进展尤为缓慢, 其中热电器件中的材料界面问题严重制约了热电转换技术的应用进程。本文从Bi2Te3型器件在温差发电方面所遇到的技术瓶颈为例, 阐述热电器件中的界面关键技术, 并归纳出电极接触界面需要综合考虑低的界面电阻、高的结合强度、以及好的高温稳定性能。然后总结了与Bi2Te3、PbTe、CoSb3基三种热电材料相关的界面材料研究进展。
本工作合成了一种具有高吸附性能和光催化性能的表面改性竹炭/二氧化钛(SMBC/TiO2)纳米复合材料。通过湿法氧化处理廉价、天然绿色的竹炭(BC), 制备了具有良好吸附性、化学稳定性的表面改性竹炭(SMBC)。经过改性, BC表面生成大量含氧官能团, 因此SMBC粒子易分散于水中, 并且与TiO2有较强的相互作用, 确保TiO2均匀地负载在SMBC表面。SMBC/TiO2比BC/TiO2有更大的比表面积, 能提供更强的吸附性能。SMBC/TiO2的饱和吸附容量大约是BC/TiO2的1.6倍, 是TiO2的12.1倍。吸附和催化的协同作用使SMBC/TiO2复合材料降解MB具有更高的光催化活性, SMBC/TiO2光催化降解MB的速率常数分别是BC/TiO2 和TiO2的7倍和6倍。
本文采用“蒸汽相转化”法合成了球形多级Y沸石。采用X射线衍射(XRD), 扫描电镜(SEM), 透射电子显微镜(TEM), N2吸附-脱附, 固态核磁共振(NMR)谱和傅里叶变换红外(IR)光谱等表征手段对制备材料的结构性能进行了表征。SEM观察结果表明合成的Y型沸石是由尺寸为50~300 nm的初级晶粒组成的球形多晶聚集体, 透射电镜观察结果表明多晶聚集体为空心Y型沸石。通过分析FT-IR, 29Si NMR, SEM和TEM等表征结果, 提出了空心球形Y沸石的形成机理。
二维材料因其不同于体相的超薄原子结构、大的比表面积和量子限域效应等受到了人们的广泛关注。二维各向异性材料作为二维材料家族的一员, 其取向依赖的物理和化学性质, 使得对该类材料性能的选择性优化成为可能。过渡金属Re基硫属化合物作为各向异性材料的典型代表, 具有可调的可见光波段吸收带隙, 极弱的层间耦合作用力, 以及各向异性的光学、电学性能, 现已成为电子和光电子领域的研究热点之一。本文主要介绍了ReX2 (X=S, Se)的晶体结构和基本性质, 总结目前该材料体系主流的合成方法, 研究其各向异性物理特性及优化的手段和条件, 并对ReX2的制备和发展进行了展望。
核能利用的过程中, 从铀矿开采、核燃料加工、核能发电到乏燃料后处理, 会产生大量放射性废物, 部分放射性核素会不可避免的释放到环境中, 对环境和人类健康造成重大危害。放射性核素的高效去除是核电健康发展的重要关键科学问题之一。近年来, 高化学稳定性、具有大量功能基团而且结构可调的多孔金属有机骨架材料(MOFs)在放射性污染治理方面受到国内外同行的高度关注。本文系统地介绍了MOFs及MOFs复合材料在放射性核素吸附去除方面的研究进展, 通过宏观吸附、模型分析、先进光谱表征和理论计算四个方面描述放射性核素与MOFs材料的界面作用机理, 并对MOFs材料的吸附性能与其它材料进行对比, 评价MOFs材料在放射性污染治理中的应用前景。
材料基因组工程技术是运用人工智能手段实现新材料按需设计的关键技术, 其中尤为重要的是创新智能算法的开发和应用。本文在总结、分析已有自然启发算法的基础上, 提出建立自然启发算法库(Nature-inspired Algorithms Library, NIAL)的设想; 明确了从不同学科取得算法启发并高通量产生新算法的基本思路; 详细阐述了构建该算法库的基本流程, 并剖析建立自然启发算法库平台的若干优势和特点。最后, 展望了自然启发算法库在新材料研发中的应用模式, 希望借此提升人工智能在材料基因组工程领域的应用水平。
由于优异的光电性能与环境稳定性, 全无机铯铅卤化物CsPbX3(X=Cl, Br, I)钙钛矿材料自2015年起逐渐成为光电领域的研究热点, 在诸多电子、光电子器件的应用研究中取得了突破性进展, 受到了科学界的广泛关注。本综述结合铯铅卤化物钙钛矿型平面异质结LED的最新研究进展, 对器件的结构及其工作原理进行扼要的介绍, 并着重从提高LED器件发光性能和工作稳定性方面进行优化策略的归类与总结, 最后就稳定高效的无机钙钛矿型平面异质结LED的发展趋势进行了展望。
随着光伏产业、平板显示技术的发展, 市场对于透明导电材料的需求量迅速增加。传统的透明导电材料氧化铟锡(ITO)面临着资源不足、脆性大的问题, 无法满足市场需求。铜纳米线透明电极导电性好、成本低、柔性好, 是一种有潜力的新一代透明导电材料。近年来, 铜纳米线的合成及其在透明导电领域的应用引起了研究人员的关注, 并取得显著的进展。本文从铜纳米线的合成方法、合成机理, 铜纳米线透明电极的制备方法及后处理手段, 铜纳米线透明电极在光伏器件、电加热元件、柔性可穿戴器件中的应用等方面的研究进展进行了阐述。并对铜纳米线研究及应用前景进行了展望。
热电发电技术在特种电源、绿色能源、环境能量收集与工业余热发电等领域具有重要的应用价值。近年来, 热电材料zT值的纪录不断被刷新, 为热电器件应用技术的发展奠定了坚实的基础。然而, 目前热电应用技术远滞后于热电材料科学的发展, 特别是热电发电技术的大规模应用仍面临着技术瓶颈和挑战。本文介绍了热电器件设计与集成的基本原理及其关键科学与技术问题, 着重总结了器件集成中的界面结构设计与优化、电极连接与器件一体化制备技术、器件服役性能与寿命评价等方面的最新研究进展。同时, 分析和展望了热电发电技术规模化应用面临的挑战与发展策略。