无机材料学报 ›› 2022, Vol. 37 ›› Issue (5): 513-519.DOI: 10.15541/jim20210416
所属专题: 【信息功能】电介质材料
王新健1(), 朱逸璇1, 张鹏1, 杨文龙1, 王挺2, 郇宇1()
收稿日期:
2021-07-02
修回日期:
2021-08-18
出版日期:
2022-05-20
网络出版日期:
2021-10-21
通讯作者:
郇宇, 副教授. E-mail: mse_huany@ujn.edu.cn
作者简介:
王新健(1996-), 男, 硕士研究生. E-mail: wangxinjian_ujn@163.com
基金资助:
WANG Xinjian1(), ZHU Yixuan1, ZHANG Peng1, YANG Wenlong1, WANG Ting2, HUAN Yu1()
Received:
2021-07-02
Revised:
2021-08-18
Published:
2022-05-20
Online:
2021-10-21
Contact:
HUAN Yu, associate professor. E-mail: mse_huany@ujn.edu.cn
About author:
WANG Xinjian (1996-), male, Master candidate. E-mail: wangxinjian_ujn@163.com
Supported by:
摘要:
钙锆共掺钛酸钡陶瓷(BCZT)具有优异的介电性能和压电性能, 是一类具有发展潜力的无铅压电陶瓷, 但其压电性能仍无法与铅基陶瓷媲美。为提高压电性能, 本研究对陶瓷材料进行Sn元素掺杂改性((Ba0.85Ca0.15)- (Ti0.9Zr0.1-xSnx)O3, x=0.02~0.07))。晶体结构分析证实所有组分的陶瓷无杂相, 处于正交相与四方相两相共存状态, 并具有较大的c/a; 显微结构分析发现所有陶瓷都很致密, 且平均晶粒尺寸随着Sn含量的增加而增大。当x=0.04时, 陶瓷最致密, 且室温处于准同型相界附近, 因此拥有最佳的电学性能: d33=590 pC•N -1, kp=52.2%, tanδ=0.016, ε T33=5372, d *33=734 pm•V -1, IR=57.8 GΩ•cm。本研究表明: Sn掺杂的BCZT基无铅压电陶瓷具有优异的压电性能, 有望在换能器、机电传感器和驱动器等方面得到应用。
中图分类号:
王新健, 朱逸璇, 张鹏, 杨文龙, 王挺, 郇宇. (Ba0.85Ca0.15)(Ti0.9Zr0.1-xSnx)O3无铅压电陶瓷的相结构与压电性能[J]. 无机材料学报, 2022, 37(5): 513-519.
WANG Xinjian, ZHU Yixuan, ZHANG Peng, YANG Wenlong, WANG Ting, HUAN Yu. Phase Structure and Piezoelectric Property of (Ba0.85Ca0.15)(Ti0.9Zr0.1-xSnx)O3 Lead-free Piezoceramics[J]. Journal of Inorganic Materials, 2022, 37(5): 513-519.
图1 BCZTSn陶瓷样品表面的SEM照片
Fig. 1 SEM images of the surface of BCZTSn ceramic samples (a) x=0.02; (b) x=0.03; (c) x=0.04; (d) x=0.05; (e) x=0.06; (f) x=0.07
图3 BCZTSn陶瓷样品的XRD精修结果
Fig. 3 XRD rietveld refinements of BCZTSn ceramic samples (a) x=0.02; (b) x=0.03; (c) x=0.04; (d) x=0.05; (e) x=0.06; (f) x=0.07
Sample | Lattice parameter | Phase ratio/% | Rwp/% | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Tetragonal phase | Orthorhombic phase | |||||||||
a/nm | c/nm | V/nm3 | c/a | a/nm | b/nm | c/nm | Tetragonal phase | Orthorhombic phase | ||
x=0.02 | 0.39986 | 0.40071 | 0.06406 | 1.0021 | 0.39968 | 0.56622 | 0.56836 | 35 | 65 | 7.48 |
x=0.03 | 0.39982 | 0.40070 | 0.06405 | 1.0022 | 0.39949 | 0.56638 | 0.56771 | 37 | 63 | 5.91 |
x=0.04 | 0.39970 | 0.40069 | 0.06401 | 1.0024 | 0.39950 | 0.56597 | 0.56789 | 47 | 53 | 9.08 |
x=0.05 | 0.39909 | 0.40000 | 0.06370 | 1.0022 | 0.39989 | 0.56565 | 0.56669 | 47 | 53 | 6.49 |
x=0.06 | 0.39929 | 0.39960 | 0.06370 | 1.0007 | 0.39935 | 0.56606 | 0.56680 | 54 | 46 | 7.61 |
x=0.07 | 0.39901 | 0.39981 | 0.06365 | 1.0002 | 0.39923 | 0.56707 | 0.56528 | 58 | 42 | 7.94 |
表1 BCZT陶瓷样品的晶格参数
Table 1 Lattice parameters of BCZTSn ceramic samples
Sample | Lattice parameter | Phase ratio/% | Rwp/% | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Tetragonal phase | Orthorhombic phase | |||||||||
a/nm | c/nm | V/nm3 | c/a | a/nm | b/nm | c/nm | Tetragonal phase | Orthorhombic phase | ||
x=0.02 | 0.39986 | 0.40071 | 0.06406 | 1.0021 | 0.39968 | 0.56622 | 0.56836 | 35 | 65 | 7.48 |
x=0.03 | 0.39982 | 0.40070 | 0.06405 | 1.0022 | 0.39949 | 0.56638 | 0.56771 | 37 | 63 | 5.91 |
x=0.04 | 0.39970 | 0.40069 | 0.06401 | 1.0024 | 0.39950 | 0.56597 | 0.56789 | 47 | 53 | 9.08 |
x=0.05 | 0.39909 | 0.40000 | 0.06370 | 1.0022 | 0.39989 | 0.56565 | 0.56669 | 47 | 53 | 6.49 |
x=0.06 | 0.39929 | 0.39960 | 0.06370 | 1.0007 | 0.39935 | 0.56606 | 0.56680 | 54 | 46 | 7.61 |
x=0.07 | 0.39901 | 0.39981 | 0.06365 | 1.0002 | 0.39923 | 0.56707 | 0.56528 | 58 | 42 | 7.94 |
图4 BCZTSn陶瓷样品的介电温谱和相转变温度图
Fig. 4 Temperature dielectric spectra and phase transition temperature diagram of BCZTSn ceramic samples (a) Temperature dielectric spectra; (b) Phase transition temperature diagram Colorful figures are available on website
图5 BCZTSn陶瓷样品的电滞回线以及数据汇总
Fig. 5 P-E hysteresis loops of BCZTSn ceramic samples (a) P-E hysteresis loops at 1 Hz; (b) Data summary of Pmax, Pr and Ec Colorful figures are available on website
图6 BCZTSn陶瓷样品的应力-应变曲线
Fig. 6 S-E curves of BCZTSn ceramic samples (a) Bipolar S-E curves; (b) Unipolar S-E curves Colorful figures are available on website
Component | d33/(pC×N-1) | kp/% | tanδ | εT33 | d*33/(pm×V-1) | IR/(GW×cm) |
---|---|---|---|---|---|---|
x=0.02 | 493 | 45.6 | 0.019 | 4773 | 678 | 55.5 |
x=0.03 | 545 | 47.5 | 0.017 | 5083 | 729 | 56.3 |
x=0.04 | 590 | 52.2 | 0.016 | 5372 | 734 | 57.8 |
x=0.05 | 464 | 42.1 | 0.018 | 5152 | 669 | 56.8 |
x=0.06 | 430 | 41.3 | 0.019 | 5446 | 660 | 53.9 |
x=0.07 | 364 | 32.5 | 0.02 | 6237 | 504 | 53.4 |
表2 BCZTSn陶瓷样品的基本电学性能
Table 2 Basic electric property of BCZTSn ceramic samples
Component | d33/(pC×N-1) | kp/% | tanδ | εT33 | d*33/(pm×V-1) | IR/(GW×cm) |
---|---|---|---|---|---|---|
x=0.02 | 493 | 45.6 | 0.019 | 4773 | 678 | 55.5 |
x=0.03 | 545 | 47.5 | 0.017 | 5083 | 729 | 56.3 |
x=0.04 | 590 | 52.2 | 0.016 | 5372 | 734 | 57.8 |
x=0.05 | 464 | 42.1 | 0.018 | 5152 | 669 | 56.8 |
x=0.06 | 430 | 41.3 | 0.019 | 5446 | 660 | 53.9 |
x=0.07 | 364 | 32.5 | 0.02 | 6237 | 504 | 53.4 |
[1] | HAO J, LI W, ZHAI J, et al. Progress in high-strain perovskite piezoelectric ceramics. Materials Science & Engineering R-Reports, 2019,135:1-57. |
[2] | GAO X, WU J, YU Y, et al. Giant piezoelectric coefficients in relaxor piezoelectric ceramic PMN-PZT for vibration energy harvesting. Advanced Functional Materials, 2018,28(30):1706895. |
[3] | TRESSLER J, ALKOY S, NEWNHAM R. Piezoelectric sensors and sensor materials. Journal of Electroceramics, 1998,2(4):257-272. |
[4] | MUDINEPALLI V R, FENG L, LIN W C, et al. Effect of grain size on dielectric and ferroelectric properties of nanostructured Ba0.8Sr0.2TiO3 ceramics. Journal of Advanced Ceramics, 2015,4(1):46-53. |
[5] | HAYATI R, BAHREVAR M A, GANJKHANLOU Y, et al. Electromechanical properties of Ce-doped (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoceramics. Journal of Advanced Ceramics, 2019,8(2):186-195. |
[6] | FAN Y, WANG Z X, HUAN Y, et al. Enhanced thermal and cycling reliabilities in (K,Na)(Nb,Sb)O3-CaZrO3- ceramics. Journal of Advanced Ceramics, 2020,9(3):349-359. |
[7] | WANG K, LI J F. (K,Na)NbO3-based lead-free piezoceramics: phase transition, sintering and property enhancement. Journal of Advanced Ceramics, 2012,1(1):24-37. |
[8] | JIANG X P, FU X L, CHEN C, et al. High performance Aurivillius type Na0.5Bi4.5Ti4O15 piezoelectric ceramics with neodymium and cerium modification. Journal of Advanced Ceramics, 2015,4(1):54-60. |
[9] | HERNANDEZ-CUEVAS G, LEYVA MENDOZA J R, GARCIA-CASILLAS P E, et al. Effect of the sintering technique on the ferroelectric and d33 piezoelectric coefficients of Bi0.5(Na0.84K0.16)0.5TiO3 ceramic. Journal of Advanced Ceramics, 2019,8(2):278-288. |
[10] | ZHENG P, ZHANG J L, TAN Y Q, et al. Grain-size effects on dielectric and piezoelectric properties of poled BaTiO3 ceramics. Acta Materialia, 2012,60(13/14):5022-5030. |
[11] | HUAN Y, WANG X H, FANG J, et al. Grain size effect on piezoelectric and ferroelectric properties of BaTiO3 ceramics. Journal of the European Ceramic Society, 2014,34(5):1445-1448. |
[12] | JIANG M, LIN Q, LIN D M, et al. Effects of MnO2 and sintering temperature on microstructure, ferroelectric, and piezoelectric properties of Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free ceramics. Journal of Materials Science, 2013,48:1035-1041. |
[13] | ZHOU M X, LIANG R H, ZHOU Z Y, et al. Enhanced Curie temperature and piezoelectric properties of (Ba0.85Ca0.15)(Zr0.10Ti0.90)O3 lead-free ceramics after the addition of LiTaO3. Materials Research Bulletin, 2018,106:213-219. |
[14] | LIU Z, YUAN R H, XUE D Z, et al. Origin of large electrostrain in Sn4+ doped Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 ceramics. Acta Materialia, 2018,157:155-164. |
[15] | ZHANG Y, SUN H J, CHEN W. A brief review of Ba(Ti0.8Zr0.2)O3- (Ba0.7Ca0.3)TiO3 based lead-free piezoelectric ceramics: past, present and future perspectives. Journal of Physics and Chemistry of Solids, 2018,114:207-219. |
[16] | FAVARIM H R, MICHALOWICZ A, M'PEKO J C, et al. Phase- transition studies of Ba0.90Ca0.10(Ti1-xZrx)O3 ferroelectric ceramic compounds. Physica Status Solidi (a), 2010,207(11):2570-2577. |
[17] | LI W, XU Z J, CHU R Q, et al. Piezoelectric and dielectric properties of (Ba1-xCax)(Ti0.95Zr0.05)O3 lead-free ceramics. Journal of the American Ceramic Society, 2010,93(10):2942-2944. |
[18] | LI W, XU Z J, CHU R Q, et al. High piezoelectric d33 coefficient in (Ba1-xCax)(Ti0.98Zr0.02)O3 lead-free ceramics with relative high Curie temperature. Materials Letters, 2010,64(21):2325-2327. |
[19] | LI W, XU Z J, CHU R Q, et al. Polymorphic phase transition and piezoelectric properties of (Ba1-xCax)(Ti0.9Zr0.1)O3 lead-free ceramics. Physica B: Condensed Matter, 2010,405(21):4513-4516. |
[20] | LIU W, REN X B. Large piezoelectric effect in Pb-free ceramics. Physical Review Letters, 2009,103(25):257602. |
[21] | WANWISA J, THEERACHAI B, TARAS K, et al. High piezoelectric response and polymorphic phase region in the lead-free piezoelectric BaTiO3-CaTiO3-BaSnO3 ternary system. RSC Advances, 2017,7(48):30166-30176. |
[22] | WANG H, YUAN H, HU Q, et al. Exploring the high-performance (1-x)BaTiO3-xCaZrO3 piezoceramics with multiphase coexistence (R-O-T) from internal lattice distortion and domain features. Journal of Alloys and Compounds, 2021,853:157167. |
[23] | WANG X F, LIU J. Enhanced ferroelectric and piezoelectric properties in SnO2 modified Ba0.85Ca0.15Zr0.1Ti0.9O3 lead-free ceramics. Journal of the Ceramic Society of Japan, 2020,128(12):1013-1017. |
[24] | WANG D W, FAN Z M, RAO G H, et al. Ultrahigh piezoelectricity in lead-free piezoceramics by synergistic design. Nano Energy, 2020,76:104944. |
[25] | LI W, XU Z J, CHU R Q, et al. Dielectric and piezoelectric properties of Ba(ZrxTi1-x)O3 lead-free ceramics. Brazilian Journal of Physics, 2010,40(3):353-356. |
[26] | CHEN Z H, LI Z W, DING J N, et al. Piezoelectric and ferroelectric properties of Ba0.9Ca0.1Ti0.9Sn0.1O3 lead-free ceramics with La2O3 addition. Journal of Alloys and Compounds, 2017,704:193-196. |
[27] | KUMAR R, ASOKAN K, PATNAIK S, et al. Evolution of microstructure and relaxor ferroelectric properties in (LazBa1-z)(Ti0.80Sn0.20)O3. Journal of Alloys and Compounds, 2016,687:197-203. |
[28] | GENE H H. Ferroelectric ceramics: history and technology. Journal of the American Ceramic Society, 1999,82(4):797-818. |
[29] | LEU C C, CHEN C Y, CHIEN C H, et al. Domain structure study of SrBi2Ta2O9 ferroelectric thin films by scanning capacitance microscopy. Applied Physics Letters, 2003,82(20):3493-3495. |
[30] | TSUR Y, DUNBAR T D, RANDALL C A, et al. Crystal and defect chemistry of rare earth cations in BaTiO3. Journal of Electroceramics, 2001,7:25-34. |
[31] | BIJALWAN V, TOFEL P, ERHART J, et al. The complex evaluation of functional properties of nearly dense BCZT ceramics and their dependence on the grain size. Ceramics International, 2019,45(1):317-326. |
[32] | CAI W, ZHANG Q W, ZHOU C, et al. Effects of oxygen partial pressure on the electrical properties and phase transitions in (Ba,Ca)(Ti,Zr)O3 ceramics. Journal of Materials Science, 2020,55(23):9972-9992. |
[33] | ZHANG S W, ZHANG H L, ZHANG B P, et al. Dielectric and piezoelectric properties of (Ba0.95Ca0.05)(Ti0.88Zr0.12)O3 ceramics sintered in a protective atmosphere. Journal of the European Ceramic Society, 2009,29(15):3235-3242. |
[34] | LIN Q, JIANG M, LIN D M, et al. Effects of La-doping on microstructure, dielectric and piezoelectric properties of Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free ceramics. Journal of Materials Science: Materials in Electronics, 2012,24(2):734-739. |
[35] | ISLAM R A, PRIYA S, AMIN A. Mn-doping effect on dielectric and electromechanical losses in the system Pb(ZrxTi1-x)O3- Pb(Zn1/3Nb2/3)O3. Journal of Materials Science, 2007,42(24):10052-10057. |
[36] | RAMAM K, LOPEZ M. Microstructure, dielectric and electromechanical properties of PLSZFT nanoceramics for piezoelectric applications. Journal of Materials Science: Materials in Electronics, 2007,19(11):1140-1145. |
[1] | 董昌, 梁瑞虹, 周志勇, 董显林. Sm掺杂增强PZT基弛豫型铁电陶瓷压电性能研究[J]. 无机材料学报, 2021, 36(12): 1270-1276. |
[2] | 郭霖, 乔显集, 李修芝, 龙西法, 何超. 三元陶瓷Pb(In1/2Nb1/2)O3-Pb(Ni1/3Nb2/3)O3-PbTiO3准同型相界附近组分的介电、铁电和压电性能[J]. 无机材料学报, 2020, 35(12): 1380-1384. |
[3] | 张 飒, 刘 莹, 刘怡萱, 程 旋, 张 颖. 原位Raman光谱技术研究PLZT铁电陶瓷相变[J]. 无机材料学报, 2014, 29(4): 399-404. |
[4] | 王大伟, 赵全亮, 曹茂盛, 崔 岩, ZHANG Shu-Jun. Sn含量对PbSnO3-Pb(Mg1/3Nb2/3)O3-PbTiO3三元系压电陶瓷相结构和电性能的影响[J]. 无机材料学报, 2014, 29(1): 28-32. |
[5] | 洪 琳, 赵丽艳, 朱兴文, 郑嘹赢, 曾江涛, 李国荣. 铌镁酸铋-钛酸铅压电陶瓷准同型相界附近的性能和相变温度研究[J]. 无机材料学报, 2012, 27(7): 735-740. |
[6] | 冯亚军,徐 卓,李振荣,张 麟,姚 熹. 准同型相界(MPB)附近BS-PT高温压电陶瓷研究[J]. 无机材料学报, 2006, 21(5): 1127-1133. |
[7] | 赵莎莎,孙清池,吴浩. PSN-PZN-PZT四元系压电陶瓷的研究[J]. 无机材料学报, 2006, 21(2): 375-380. |
[8] | 裴志斌,杜红亮,车俊,魏晓勇,屈绍波. PNW-PMS-PZT压电陶瓷准同型相界的压电性能研究[J]. 无机材料学报, 2005, 20(4): 988-992. |
[9] | 张孝文,陈克丕. 弛豫铁电材料在准同型相界附近结构和性能研究的最新进展[J]. 无机材料学报, 2002, 17(3): 385-391. |
[10] | 朱为民,李承恩,郭存济,颜莉华. 相组成对PMN-PT陶瓷压电性能的影响[J]. 无机材料学报, 2001, 16(4): 641-648. |
[11] | 初宝进,李国荣,江向平,陈大任. Na1/2Bi1/2TiO3-BaTiO3系陶瓷压电性及弛豫相变研究[J]. 无机材料学报, 2000, 15(5): 815-821. |
[12] | 李振荣,姚熹. Pb(Ni1/3Nb2/3)O3-PbTiO3系统准同型相界附近的介电异常[J]. 无机材料学报, 2000, 15(5): 839-843. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||