[1] |
IKESUE A, AUNG Y L. Ceramic laser materials. Nature Photonics, 2018,2(12):721-727.
DOI
URL
|
[2] |
KAMINSKII A A. Laser crystals and ceramics: recent advances. Laser & Photonics Reviews, 2007,1(2):93-177.
|
[3] |
TAIRA T. RE3+-ion-doped YAG ceramic lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2007,13(3):798-809.
|
[4] |
TAO X T, WANG S P, WANG L, et al. Research in crystal materials: from bulk crystals to micro-nano crystals. Journal of Synthetic Crystals, 2019,48:765-785.
|
[5] |
LI N, LIU B, SHI J J, et al. Research progress of rare-earth doped laser crystals in visible region. Journal of Inorganic Materials, 2019,34:573-589.
|
[6] |
GRUBER J B, SARDAR D K, YOW R M, et al. Energy-level structure and spectral analysis of Nd3+ (4f3) in polycrystalline ceramic garnet Y3Al5O12. Journal of Applied Physics, 2004,96(6):3050-3056.
|
[7] |
LI J H, LIU X H, WU J B, et al. High-power diode-pumped Nd:Lu2O3 crystal continuouswave thin-disk laser at 1359 nm. Laser Physics Letters, 2012,9(3):195-198.
|
[8] |
JU M, XIAO Y, ZHONG M M, et al. New theoretical insights into the crystal-field splitting and transition mechanism for Nd3+-doped Y3Al5O12. ACS Applied Materials & Interfaces, 2019,11(11):10745-10750.
|
[9] |
BRUNN P V, HEUER A M, FORNASIERO L, et al. Efficient laser operation of Nd3+:Lu2O3 at various wavelengths between 917 nm and 1463 nm. Laser Physics, 2016,26(8):084003.
|
[10] |
HAO L Z, WU K, CONG H J, et al. Spectroscopy and laser performance of Nd:Lu2O3 crystal. Optics Express, 2011,19(18):17774-17779.
|
[11] |
XUE X G, ZHANG F, ZHAO H Q. Influence of the Nd:YAG laser-induced color center absorption on 1064 nm laser output power. Journal of Synthetic Crystals, 2018,47(5):1083-1088.
|
[12] |
PAVEL N. Simultaneous dual-wavelength emission at 0.90 and 1.06 µm in Nd-doped laser crystals. Laser Physics, 2010,20(1):215-221.
|
[13] |
HUANG B, YI Q, YANG L L, et al. Dual-wavelength nanosecond Nd:YVO4 laser with switchable inhomogeneous polarization output. IEEE Journal of Selected Topics in Quantum Electronics, 2018,24(5):1-5.
|
[14] |
PANG S Y, QIAN X B, WU Q H, et al. Structure and spectral property of Sc doped Nd:CaF2 laser crystals. Journal of Inorganic Materials, 2018,33(8):873-876.
|
[15] |
DANAILOV M B, MILEV I Y. Simultaneous multiwavelength operation of Nd:YAG laser. Applied Physics Letters, 1992,61(7):746-748.
|
[16] |
WANG Q Q, SHI Y, FENG Y G, et al. Li J. Spectral characteristics and laser parameters of solar pumped Cr,Nd:YAG transparent ceramics. Chinese Journal of Luminescence, 2019,40(11):1365-1372.
|
[17] |
SANGHERA J, KIM W, VILLALOBOS G, et al. Ceramic laser materials: past and present. Optical Materials, 2013,35:693-699.
|
[18] |
SPRINGER R M, THOMAS M E. Analysis and comparison of single crystal and polycrystalline Nd:YAG, absorption. IEEE Journal of Quantum Electronics, 2013,49(8):667-676.
|
[19] |
WANG H M, HUANG Z Y, QI J Q, et al. A new methodology to obtain the fracture toughness of YAG transparent ceramics. Journal of Advanced Ceramics, 2019,8:418-426.
DOI
URL
|
[20] |
LAPUCCI A, VANNINI M, CIOFINI M, et al. Design and Characterization of Yb and Nd Doped Transparent Ceramics for High Power Laser Applications: Recent Advancements. XXI International Symposium on High Power Laser Systems and Applications,Gmunden,Austria, 2016,10254:102540E.
|
[21] |
GARREC B L, CARDINALI V, BOURDET G. Thermo-optical Measurements of Ytterbium Doped Ceramics (Sc2O3, Y2O3, Lu2O3, YAG) and Crystals (YAG, CaF2) at Cryogenic Temperatures. High-power, High-energy, and High-intensity Laser Technology; and Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers, 2013,8780:87800E.
|
[22] |
LIU Q, LI J B, DAI J W, et al. Fabrication, microstructure and spectroscopic properties of Yb:Lu2O3 transparent ceramics from co-precipitated nanopowders. Ceramics International, 2018,44(10):11635-11643.
|
[23] |
DAI Z F, LIU Q, TOCI G, et al. Fabrication and laser oscillation of Yb:Sc2O3 transparent ceramics from co-precipitated nano-powders. Journal of the European Ceramic Society, 2018,38(4):1632-1638.
|
[24] |
BALLATO J, MCMILLEN C, KOKUOZ B, et al. The Synthesis and Properties of Rare Earth Doped Yttria and Scandia for Eye-safe Single Crystal and Ceramic Lasers. Solid State Lasers XVII: Technology and Devices, California, United States, 2008,6871:68711G.
|
[25] |
WALSH B M, MCMAHON J M, EDWARDS W C, et al. Spectroscopic characterization of Nd:Y2O3: application toward a differential absorption lidar system for remote sensing of ozone. JOSA B, 2002,19(12):2893-2903.
|
[26] |
MCMILLEN C D, SANJEEWA L D, MOORE C A, Crystal growth and phase stability of Ln:Lu2O3(Ln=Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb) in a higher-temperature hydrothermal regime. Journal of Crystal Growth, 2016,452:146-150.
|
[27] |
SINGH S, SMITH R G, VAN UITERT L G. Stimulated-emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature. Physical Review B, 1974,10(6):2566.
|
[28] |
WANG B L, YU H H, ZHANG H, et al. Topological insulator simultaneously Q-switched dual-wavelength Nd:Lu2O3 laser. IEEE Photonics Journal, 2014,6(3):1-7.
|
[29] |
LI J, PAN Y B, ZENG Y P, et al. The history, development, and future prospects for laser ceramics: a review. International Journal of Refractory Metals and Hard Materials, 2013,39:44-52.
|
[30] |
BOULESTEIX R, EPHERRE R, NOYAU S, et al. Highly transparent Nd:Lu2O3 ceramics obtained by coupling slip-casting and spark plasma sintering. Scripta Materialia, 2014,75:54-57.
|
[31] |
LU J, TAKAICHI K, UEMATSU T, Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic. Applied Physics Letters, 2002,81:4324-4326.
|
[32] |
XU C W, YANG C D, ZHANG H, et al. Efficient laser operation based on transparent Nd:Lu2O3 ceramic fabricated by spark plasma sintering. Optics Express, 2016,24:20571-20579.
|
[33] |
ALOMBERT-GOGET G, GUYOT Y, GUZIK M, et al. Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 1: Structural, thermal conductivity and spectroscopic characterization. Optical Materials, 2015,41:3-11.
|
[34] |
TOCI G, VANNINI M, CIOFINI M, et al. Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 2: First laser output results and comparison with Nd3+-doped Lu2O3 and Nd3+-Y2O3 ceramics elaborated by a conventional method. Optical Materials, 2015,41:12-16.
|
[35] |
LEE S H, KUPP E R, STEVENSON A J, et al. Hot isostatic pressing of transparent Nd:YAG ceramics. Journal of the American Ceramic Society, 2009,92:1456-1463.
|
[36] |
LIU Z Y, TOCI G, PIRRI A, et al. Fabrication and laser operation of Yb:Lu2O3 transparent ceramics from co-precipitated nano-powders. Journal of the American Ceramic Society, 2019,102(12):7491-7499.
|
[37] |
PATTERSON A L. The Scherrer formula for X-ray particle size determination. Physical Review, 1939,56(10):978.
|
[38] |
KAMINSKII A A, AKCHURIN M S, BECKER P, et al. Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants. Laser Physics Letters, 2007,5(4):300-303.
|
[39] |
FENG Y G, TOCI G, PIRRI A, et al. Fabrication, microstructure, and optical properties of Yb:Y3ScAl4O12 transparent ceramics with different doping levels. Journal of the American Ceramic Society, 2020,103(1):224-234.
|