无机材料学报 ›› 2017, Vol. 32 ›› Issue (8): 870-876.DOI: 10.15541/jim20160584 CSTR: 32189.14.10.15541/jim20160584
郭秀斌1, 于 威1, 李 婧1, 蒋昭毅2, 马登浩2, 刘海旭1
收稿日期:
2016-10-24
修回日期:
2016-12-27
出版日期:
2017-08-10
网络出版日期:
2017-07-19
作者简介:
郭秀斌(1990–), 男, 硕士研究生. E-mail: 1067654456@qq.com
基金资助:
GUO Xiu-Bin1, YU Wei1, Li Jing1, JIANG Zhao-Yi2, MA Deng-Hao2, LIU Hai-Xu1
Received:
2016-10-24
Revised:
2016-12-27
Published:
2017-08-10
Online:
2017-07-19
About author:
GUO Xiu-Bin. E-mail: 1067654456@qq.com
Supported by:
摘要:
采用纯N, N-二甲基甲酰胺(DMF)溶剂、纯二甲基亚砜(DMSO)溶剂以及DMSO/DMF不同体积比例混合溶剂制备钙钛矿(CH3NH3PbI3)薄膜, 并系统研究了不同溶剂对钙钛矿薄膜微结构及光电特性的影响。结果表明, 随着DMSO在混合溶剂中比例增加, 钙钛矿薄膜平均晶粒尺寸增大, 碘化铅(PbI2)残留量降低, 同时薄膜中有序的钙钛矿晶体所占比例呈现先增大后减小的趋势, 并且当DMSO占混合溶剂体积比为60%时达到最大。薄膜Urbach能, 载流子寿命以及PbI2含量之间的关系表明, 微量的PbI2可有效钝化钙钛矿薄膜的缺陷。经过优化后(DMSO占混合溶剂体积比为30%), 钙钛矿太阳电池的光电转换效率达到15.1 % (VOC=0.99 V; JSC=20.9 mA/cm2; FF=0.73)。
中图分类号:
郭秀斌, 于 威, 李 婧, 蒋昭毅, 马登浩, 刘海旭. 利用混合溶剂实现钙钛矿材料微观结构和光电性能优化[J]. 无机材料学报, 2017, 32(8): 870-876.
GUO Xiu-Bin, YU Wei, Li Jing, JIANG Zhao-Yi, MA Deng-Hao, LIU Hai-Xu. Improving Microstructure and Photoelectric Performance of the Perovskite Material via Mixed Solvents[J]. Journal of Inorganic Materials, 2017, 32(8): 870-876.
图1 不同溶剂制备的钙钛矿薄膜表面形貌
Fig. 1 Surface morphologies of perovskite films prepared by different solvents(a) Pure DMF solvent; (f) Pure DMSO solvent; (b) 15% DMSO; (c) 30% DMSO; (d) 60% DMSO; (e) 80% DMSO
图4 不同溶剂制备的钙钛矿薄膜截面图
Fig. 4 Cross-section views of perovskite films prepared by different solvents(a) Pure DMF solvent; (d) Pure DMSO solvent; (b) 30% DMSO; (c) 60% DMSO
图6 纯DMF溶剂制备的钙钛矿薄膜PL拟合结果(a)以及有序相和无序相比值随DMSO含量变化趋势图(b)
Fig. 6 Fit of PL spectrum for perovskite film based on pure DMF solvent (a); the change trend of the ratio of ordered to disordered phases with the increase of DMSO (b)
Sample | τ1/ns | τ2/ns |
---|---|---|
DMF | 2.0 | 81 |
15% | 3.1 | 85 |
30% | 2.6 | 94 |
60% | 3.5 | 90 |
80% | 1.8 | 77 |
DMSO | 1.7 | 67 |
表1 时间分辨的光致发光双指数衰减拟合参数
Table 1 Carrier lifetime extracted from TR-PL decay curves
Sample | τ1/ns | τ2/ns |
---|---|---|
DMF | 2.0 | 81 |
15% | 3.1 | 85 |
30% | 2.6 | 94 |
60% | 3.5 | 90 |
80% | 1.8 | 77 |
DMSO | 1.7 | 67 |
Devices | JSC/(mA·cm-2) | VOC/V | FF/% | PCE/% |
---|---|---|---|---|
DMF | 15.4 | 0.91 | 66.3 | 9.3 |
15% | 18.9 | 0.95 | 70.3 | 12.6 |
30% | 20.9 | 0.99 | 72.8 | 15.1 |
60% | 20.2 | 0.96 | 71.9 | 13.9 |
80% | 17.2 | 0.94 | 69.2 | 11.2 |
DMSO | 14.7 | 0.91 | 63.1 | 8.4 |
表2 不同溶剂制备的钙钛矿电池的光伏参数
Table 2 Photovoltaic parameters of devices prepared by mixed solvents with different volume ratios
Devices | JSC/(mA·cm-2) | VOC/V | FF/% | PCE/% |
---|---|---|---|---|
DMF | 15.4 | 0.91 | 66.3 | 9.3 |
15% | 18.9 | 0.95 | 70.3 | 12.6 |
30% | 20.9 | 0.99 | 72.8 | 15.1 |
60% | 20.2 | 0.96 | 71.9 | 13.9 |
80% | 17.2 | 0.94 | 69.2 | 11.2 |
DMSO | 14.7 | 0.91 | 63.1 | 8.4 |
[1] | KOJIMA A, TESHIMA K, SHIRAI Y, et al.Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.Journal of the American Chemical Society, 2009, 131(17): 6050-6051. |
[2] | ETGAR L, GAO P, XUE Z, et al.Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells.Journal of the American Chemical Society, 2012, 134(42): 17396-17399. |
[3] | LEE M M, TEUSCHER J, MIYASAKA T, et al.Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites.Science, 2012, 338(6107): 643-647. |
[4] | PARK N G.Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell.Journal of Physical Chemistry Letters, 2013, 4(15): 2423-2429. |
[5] | NOH J H, SANG H I, JIN H H, et al.Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells.Nano Letters, 2013, 13(4): 1764-1769. |
[6] | JEON N J, NOH J H, YANG W S, et al.Compositional engineering of perovskite materials for high-performance solar cells.Nature, 2015, 517(7535): 476-480. |
[7] | MATTEOCCI F, RAZZA S, DI G F, et al.Solid-state solar modules based on mesoscopic organometal halide perovskite: a route towards the up-scaling process.Physical Chemistry Chemical Physics, 2014, 16(9): 3918-3923. |
[8] | JENG J Y, CHIANG Y F, LEE M H, et al.CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells.Advanced Materials, 2013, 25(27): 3727-3732. |
[9] | IM J H, JANG I H, PELLET N, et al.Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells.Nature Nanotechnology, 2014, 9(11): 927-932. |
[10] | ZHAO Y, ZHU K.Solution chemistry engineering toward high-efficiency perovskite solar cells.Journal of Physical Chemistry Letters, 2014, 5(23): 4175-4186. |
[11] | WU Y, ISLAM A, YANG X, et al.Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition.Energy & Environmental Science, 2014, 7(9): 2934-2938. |
[12] | WAKAMIYA A, ENDO M, SASAMORI T, et al.Reproducible fabrication of efficient perovskite-based solar cells: X-ray crystallographic studies on the formation of CH3NH3PbI3 Layer.Chemistry Letters, 2014, 43(5): 711-713. |
[13] | TANG Z, TANAKA S, ITO S, et al.Investigating relation of photovoltaic factors with properties of perovskite films based on various solvents.Nano Energy, 2016, 21: 51-61. |
[14] | JEON N J, NOH J H, KIM Y C, et al.Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells.Nature Materials, 2014, 13(9): 897-903. |
[15] | LI W, FAN J, LI J, et al.Controllable grain morphology of perovskite absorber film by molecular self-assembly toward efficient solar cell exceeding 17%.Journal of the American Chemical Society, 2015, 137(32): 10399-10405. |
[16] | CAI B, ZHANG W H, QIU J, et al.Solvent engineering of spin-coating solutions for planar-structured high-efficiency perovskite solar cells.Chinese Journal of Catalysis, 2015, 36(8): 1183-1190. |
[17] | YANG W S, NOH J H, JEON N J, et al.High-performance photovoltaic perovskite layers fabricated through intramolecular exchange.Science, 2015, 348(6240): 1234-1237. |
[18] | CHEN Q, ZHOU H, HONG Z, et al.Planar heterojunction perovskite solar cells via vapor-assisted solution process.Journal of the American Chemical Society, 2014, 136(2): 622-625. |
[19] | ZHAO L, LUO D, WU J, et al.High-performance inverted planar heterojunction perovskite solar cells based on lead acetate precursor with efficiency exceeding 18%.Advanced Functional Materials, 2016, 26(20): 3508-3514. |
[20] | IKHMAYIES S J, AHMAD-BITAR R N. An investigation of the bandgap and Urbach tail of vacuum-evaporated SnO2 thin films.Physica Scripta, 2011, 84(5): 143-146. |
[21] | WASSNER T A, LAUMER B, MAIER S, et al. Optical properties and structural characteristics of ZnMgO grown by plasma assisted molecular beam epitaxy. Journal of Applied Physics, 2009, 105(2): 023505-1-6. |
[22] | LIU F, DONG Q, WONG M K, et al. Is excess PbI2 beneficial for perovskite solar cell performance. Advanced Energy Materials, 2016, 6(7): 1502206-1-9. |
[23] | PARK B W, JAIN S M, ZHANG X, et al.Resonance Raman and excitation energy dependent charge transfer mechanism in halide- substituted hybrid perovskite solar cells.ACS Nano, 2015, 9(2): 2088-2101. |
[24] | PELLET N, GAO P, GREGORI G, et al.Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting.Angewandte Chemie, 2014, 53(12): 3151-3157. |
[25] | CHEN Q, ZHOU H, SONG T B, et al.Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells.Nano Letters, 2014, 14(7): 4158-4163. |
[26] | XING G, MATHEWS N, SUN S, et al.Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3.Science, 2013, 342(6156): 344-347. |
[1] | 瞿牡静, 张淑兰, 朱梦梦, 丁浩杰, 段嘉欣, 代恒龙, 周国红, 李会利. CsPbBr3@MIL-53纳米复合荧光粉的合成、性能及其白光LEDs应用[J]. 无机材料学报, 2024, 39(9): 1035-1043. |
[2] | 肖梓晨, 何世豪, 邱诚远, 邓攀, 张威, 戴维德仁, 缑炎卓, 李金华, 尤俊, 王贤保, 林俍佑. 钙钛矿太阳能电池纳米纤维改性电子传输层研究[J]. 无机材料学报, 2024, 39(7): 828-834. |
[3] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[4] | 陈甜, 罗媛, 朱刘, 郭学益, 杨英. 有机-无机共添加增强柔性钙钛矿太阳能电池机械弯曲及环境稳定性能[J]. 无机材料学报, 2024, 39(5): 477-484. |
[5] | 于嫚, 高荣耀, 秦玉军, 艾希成. 上转换发光纳米材料对钙钛矿太阳能电池迟滞效应和离子迁移动力学的影响[J]. 无机材料学报, 2024, 39(4): 359-366. |
[6] | 陈正鹏, 金芳军, 李明飞, 董江波, 许仁辞, 徐韩昭, 熊凯, 饶睦敏, 陈创庭, 李晓伟, 凌意瀚. 双钙钛矿Sr2CoFeO5+δ阴极材料的制备及其中温固体氧化物燃料电池性能研究[J]. 无机材料学报, 2024, 39(3): 337-344. |
[7] | 周泽铸, 梁子辉, 李静, 吴聪聪. 基于挥发性溶剂制备MAPbI3钙钛矿太阳能电池/模组[J]. 无机材料学报, 2024, 39(11): 1197-1204. |
[8] | 厉佥元, 李纪伟, 张钰涵, 刘焱康, 孟阳, 储余, 朱一佳, 徐诺言, 朱亮, 张传香, 陶海军. PbTiO3修饰和极化处理提升钙钛矿太阳能电池性能[J]. 无机材料学报, 2024, 39(11): 1205-1211. |
[9] | 代晓栋, 张露伟, 钱奕成, 任智鑫, 曹焕奇, 印寿根. 锡铅混合钙钛矿太阳能电池垂直组分梯度的溶剂工程调控[J]. 无机材料学报, 2023, 38(9): 1089-1096. |
[10] | 董思吟, 帖舒婕, 袁瑞涵, 郑霄家. 低维卤化物钙钛矿直接型X射线探测器研究进展[J]. 无机材料学报, 2023, 38(9): 1017-1030. |
[11] | 王润, 相恒阳, 曾海波. 钙钛矿多色级联发光二极管中多中心载流子均衡分布调控研究[J]. 无机材料学报, 2023, 38(9): 1062-1068. |
[12] | 王马超, 唐扬敏, 邓明雪, 周真真, 刘小峰, 王家成, 刘茜. 共沉淀法制备Cs2Ag0.1Na0.9BiCl6:Tm3+双钙钛矿及其近红外发光性能[J]. 无机材料学报, 2023, 38(9): 1083-1088. |
[13] | 韩旭, 姚恒大, 吕梅, 陆红波, 朱俊. 单分子液晶添加剂在甲脒铅碘钙钛矿太阳能电池中的应用[J]. 无机材料学报, 2023, 38(9): 1097-1102. |
[14] | 方万丽, 沈黎丽, 李海艳, 陈薪羽, 陈宗琦, 寿春晖, 赵斌, 杨松旺. NiOx介孔层的成膜过程对碳电极钙钛矿太阳能电池性能的影响[J]. 无机材料学报, 2023, 38(9): 1103-1109. |
[15] | 蔡凯, 靳志文. 基于二维钙钛矿(PEA)2PbI4的光电探测器[J]. 无机材料学报, 2023, 38(9): 1069-1075. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||