无机材料学报 ›› 2017, Vol. 32 ›› Issue (5): 509-516.DOI: 10.15541/jim20160425 CSTR: 32189.14.10.15541/jim20160425
张昌松, 刘 强, 陈 威
收稿日期:
2016-07-18
修回日期:
2016-10-03
出版日期:
2017-05-20
网络出版日期:
2017-05-02
基金资助:
ZHANG Chang-Song, LIU Qiang, CHEN Wei
Received:
2016-07-18
Revised:
2016-10-03
Published:
2017-05-20
Online:
2017-05-02
Supported by:
摘要:
利用纳米级粉体经热压烧结制备了Si3N4-hBN复相陶瓷, 研究了hBN含量对Si3N4-hBN复相陶瓷致密度、力学性能、摩擦学性能、微观结构的影响。用阿基米德排水法、三点弯曲法和维氏压痕法测量材料的致密度、力学性能; 用摩擦磨损试验机测试材料的摩擦学性能; 用XRD、EDAX和SEM、LSCM分析观察材料的物相组成和微观结构。研究结果表明, 随着hBN含量的增加, 复相陶瓷的密度将会持续下降, 气孔率先是急剧上升, 然后趋于平缓, 力学性能持续下降, 干摩擦条件下复相陶瓷与GCr15配副的摩擦学性能呈现先提高后降低的趋势, 当hBN含量低于20wt%时, 随着hBN含量的增加, 摩擦系数和磨损率逐渐减小; 当hBN含量大于20wt%时, 摩擦系数和磨损率急剧增大; hBN含量为20wt%时, 获得最低的摩擦系数为0.31。hBN的引入直接影响Si3N4-hBN复相陶瓷的微观组织结构, 进而影响复合陶瓷的力学性能和摩擦学性能。
中图分类号:
张昌松, 刘 强, 陈 威. hBN含量对Si3N4-hBN复相陶瓷性能和微观结构的影响[J]. 无机材料学报, 2017, 32(5): 509-516.
ZHANG Chang-Song, LIU Qiang, CHEN Wei. Effect of hBN Content on Property and Microstructure of Si3N4-hBN Composite Ceramics[J]. Journal of Inorganic Materials, 2017, 32(5): 509-516.
Number | HBN/ wt% | Density /(g·cm-3) | Relative density /% | Porosity /% | Bending strength /MPa | Vickers hardness /GPa | Fracture toughness /(MPa·m1/2) |
---|---|---|---|---|---|---|---|
SN0 | 0 | 3.20 | 97.0 | 0.24 | 818 | 14.9 | 7.36 |
SN5 | 5 | 3.12 | 96.7 | 0.55 | 764 | 13.3 | 6.67 |
SN10 | 10 | 3.04 | 96.4 | 0.80 | 717 | 12.4 | 6.58 |
SN20 | 20 | 2.89 | 96.0 | 1.02 | 695 | 8.9 | 6. 39 |
SN30 | 30 | 2.79 | 91.2 | 1.08 | 577 | 6.6 | 5.98 |
表1 热压烧结Si3N4-hBN复相陶瓷的致密度和力学性能
Table 1 Physical and mechanical properties of Si3N4-hBN composite ceramics by hot-pressed sintering
Number | HBN/ wt% | Density /(g·cm-3) | Relative density /% | Porosity /% | Bending strength /MPa | Vickers hardness /GPa | Fracture toughness /(MPa·m1/2) |
---|---|---|---|---|---|---|---|
SN0 | 0 | 3.20 | 97.0 | 0.24 | 818 | 14.9 | 7.36 |
SN5 | 5 | 3.12 | 96.7 | 0.55 | 764 | 13.3 | 6.67 |
SN10 | 10 | 3.04 | 96.4 | 0.80 | 717 | 12.4 | 6.58 |
SN20 | 20 | 2.89 | 96.0 | 1.02 | 695 | 8.9 | 6. 39 |
SN30 | 30 | 2.79 | 91.2 | 1.08 | 577 | 6.6 | 5.98 |
Analysis area | Elements /at% | ||||
---|---|---|---|---|---|
Si | N | O | Al | Y | |
“1” area | 39.72 | 52.91 | 5.36 | 1.57 | 0.42 |
表2 纯Si3N4陶瓷微区成分分析(EDAX)
Table 2 Microareas elements of EDAX analysis of pure Si3N4 ceramics
Analysis area | Elements /at% | ||||
---|---|---|---|---|---|
Si | N | O | Al | Y | |
“1” area | 39.72 | 52.91 | 5.36 | 1.57 | 0.42 |
图3 Si3N4-hBN陶瓷复合材料断口形貌
Fig. 3 Fracture morphologies of Si3N4-hBN ceramic composites(SEM) (a) pure Si3N4; (b) Si3N4-5wt%hBN; (c) Si3N4-10wt%hBN; (d) Si3N4-20wt%hBN; (e) Si3N4-30wt%hBN
图4 SN0-SN30与GCr15配副摩擦面的摩擦因数(a)和磨损率(b)变化图
Fig. 4 Change of friction coefficient (a) and wear coefficient (b) of SN0-SN30 and GCr15 with a pair of friction surface
[1] | RILEY F L.Silicon nitride and related materials.Journal of the American Ceramic Society, 2000, 83(2): 245-265. |
[2] | ZIEGLER A, IDROBO J C, CINIBYLK M K, et al.Interface structure and atomic bonding characteristics in sicon nitride ceramics.Science, 2004, 306(3): 1768-1770. |
[3] | ZHU C J, JIANG J, GAO L, et al.The fabrication and progress of silicon nitride ceramics.Jiangsu Ceramics, 2001, 34(3): 10-12. |
[4] | ZHANG W R.Current status and progress of Si3N4-SiCp multiphase ceramic.Hebei Ceramic, 1995, 23(03): 21-24. |
[5] | PETZOW G, HERRMANN M.Silicon Nitride Ceramics: Structure & Bonding. Berlin Heidelberg: Springer-Verlag, 2002, 102: 47-167. |
[6] | 周玉. 陶瓷材料学. 北京: 科学出版社, 2004. |
[7] | 李世普. 特种陶瓷工艺学. 武汉: 武汉理工大学, 2008. |
[8] | ZHANG G J, ZOU J, NI D W, et al.Boride ceramics: densification, microstructure tailoring and properties improvement.Journal of Inorganic Materials, 2012, 27(3): 225-233. |
[9] | DUAN X M, YANG Z, CHEN L, et al.Review on the properties of hexagonal boron nitride matrix composite ceramics.Journal of the European Ceramic Society, 2016, 36(15): 3725-3737. |
[10] | SUN Y, MENG Q C, JIA D C, et al.Effect of hexagonal BN on the microstructure and mechanical properties of Si3N4 ceramics.Journal of Materials Processing Technology, 2007, 182(1): 134-138. |
CHO M W, KIM D W, CHO W S.Analysis of micromachining characteristics of Si3N4-hBN composites.Journal of the Europ- ean Ceramic Society, 2007, 27(2): 1259-1265. | |
[11] | WEI D Q, MENG Q C, JIA D C.Microstructure of hot pressed hBN-Si3N4 ceramic composites with Y2O3-Al2O3 sintering additive.Ceramics International, 2007, 33(2): 221-226. |
[12] | WANG R G, PAN W, JIANG M N, et al.Investigation of the physical and mechanical properties of hot-pressed machinable Si3N4-hBN composites and FGM.Materials Science and Engineering: B, 2002, 90(3): 261-268. |
[13] | ZOU J, ZHANG G J, SHEN Z J, et al.Ultra-low temperature reactive spark plasma sintering of ZrB2-hBN ceramics.Journal of the European Ceramic Society, 2016, 36(15): 3637-3645. |
[14] | ZOU J, LIU J, ZHANG G J, et al.Hexagonal BN-encapsulated ZrB2 particle by nitride boronizing.Acta Materialia, 2014, 72(15): 167-177. |
[15] | GAO L, JIN X, LI J, et al.BN/Si3N4 nanocomposite with high strength and good machinability.Materials Science and Engineering: A, 2006, 415(1): 145-148. |
[16] | SKOPP A, WOYDT M.Ceramic and ceramic composite materials with improved friction and wear properties.Tribology transactions, 1995, 38(2): 233-242. |
[17] | CARRAPICHANO J M, GOMES J R, SILVA R F.Tribological behaviour of Si3N4-BN ceramic materials for dry sliding applications.Wear, 2002, 253(9): 1070-1076. |
[18] | CHEN W, GAO Y M, CHEN C.Tribological behavior of Si3N4-hBN ceramic materials against stainless steel under dry friction condition.Tribology, 2010, 30(3): 243. |
[19] | LIZUKA T, KITA H, HIRAI T, et al.Tribological behavior of W2C nano-particle reinforced Si3N4 matrix composite.Wear, 2004, 257(9): 953-961. |
[20] | YUAN L J, YAN D S, MAO Z Q.Mechanism and knetics of sintering of hot-pressed silicon nitride at lower temperatures.Journal of the Chinese Ceramic Society, 1989, 17(6): 530-536. |
[1] | 范武刚, 曹雄, 周响, 李玲, 赵冠楠, 张兆泉. 8YSZ陶瓷在模拟压水堆水环境中的耐腐蚀性能[J]. 无机材料学报, 2024, 39(7): 803-809. |
[2] | 姜灵毅, 庞生洋, 杨超, 张悦, 胡成龙, 汤素芳. C/SiC-BN复合材料的制备及氧化行为[J]. 无机材料学报, 2024, 39(7): 779-786. |
[3] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[4] | 孙海洋, 季伟, 王为民, 傅正义. TiB-Ti周期序构复合材料设计、制备及性能研究[J]. 无机材料学报, 2024, 39(6): 662-670. |
[5] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[6] | 刘国昂, 王海龙, 方成, 黄飞龙, 杨欢. B4C含量对(Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C陶瓷力学性能及抗氧化性能的影响[J]. 无机材料学报, 2024, 39(6): 697-706. |
[7] | 粟毅, 史扬帆, 贾成兰, 迟蓬涛, 高扬, 马青松, 陈思安. 浆料浸渍辅助PIP工艺制备C/HfC-SiC复合材料的微观结构及性能研究[J]. 无机材料学报, 2024, 39(6): 726-732. |
[8] | 薛轶凡, 李玮洁, 张中伟, 庞旭, 刘愚. 碳纤维布表面PyC界面相微观结构及均匀性的工艺调控[J]. 无机材料学报, 2024, 39(4): 399-408. |
[9] | 李雷, 程群峰. 高性能MXenes纳米复合材料研究进展[J]. 无机材料学报, 2024, 39(2): 153-161. |
[10] | 刘艳艳, 谢曦, 刘增乾, 张哲峰. MAX相陶瓷增强金属基复合材料: 制备、性能与仿生设计[J]. 无机材料学报, 2024, 39(2): 145-152. |
[11] | 王博, 蔡德龙, 朱启帅, 李达鑫, 杨治华, 段小明, 李雅楠, 王轩, 贾德昌, 周玉. SrAl2Si2O8增强BN陶瓷的力学性能及抗热震性能[J]. 无机材料学报, 2024, 39(10): 1182-1188. |
[12] | 倪晓诗, 林子扬, 秦沐严, 叶松, 王德平. 硅烷化介孔硼硅酸盐生物玻璃微球对PMMA骨水泥生物活性和力学性能的影响[J]. 无机材料学报, 2023, 38(8): 971-977. |
[13] | 吴爽, 苟燕子, 王永寿, 宋曲之, 张庆雨, 王应德. 高温热处理对国产KD-SA型SiC纤维组成结构与力学性能的影响[J]. 无机材料学报, 2023, 38(5): 569-576. |
[14] | 李建波, 田震, 蒋全伟, 于砺锋, 康慧君, 曹志强, 王同敏. 不同元素掺杂对CaTiO3微观结构及热电性能的影响[J]. 无机材料学报, 2023, 38(12): 1396-1404. |
[15] | 付师, 杨增朝, 李江涛. 功率模块封装用高强度高热导率Si3N4陶瓷的研究进展[J]. 无机材料学报, 2023, 38(10): 1117-1132. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||