[1] |
LINSEBIGLER A L, LU G, YATES J T.Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results.Chem. Rev., 1995, 95(3): 735-751.
|
[2] |
CHEN X B, SHEN S H, GUO L J, et al. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev., 2010, 110(11): 6503-6570.
|
[3] |
DIEBOLD U.The surface science of titanium dioxide.Surf. Sci. Rep., 2003, 48(5-8): 53-229.
|
[4] |
COQUET R, HOWARD K L, WILLOCK D J.Theory and simulation in heterogeneous gold catalysis.Chem. Soc. Rev., 2008, 37(9): 2046-2076.
|
[5] |
COLEMAN H M, CHIANG K, AMAL R.Effects of Ag and Pt on photocatalytic degradation of endocrine disrupting chemicals in water.Chem. Engin. J., 2005, 113(1): 65-72.
|
[6] |
KOZLOVA E A, VORONTSOV A V.Influence of mesoporous and platinum-modified titanium dioxide preparation methods on photocatalytic activity in liquid and gas phase.Appl. Catal. B: Environ., 2007, 77(1/2): 35-45.
|
[7] |
LI C M, ZHANG S T, ZHANG B S, et al. Photohole-oxidation- assisted anchoring of ultra-small Ru clusters onto TiO2 with excellent catalytic activity and stability. J. Mater. Chem. A, 2013, 1(7): 2461-2467.
|
[8] |
METE E, UNER D, GÜLSEREN O, et al. Pt-incorporated anatase TiO2(001) surface for solar cell applications: first-principles density functional theory calculations. Phys. Rev. B, 2009, 79(12): 125418-125432.
|
[9] |
METE E, GÜLSEREN O, ELLIALTIOĞLU Ş. Modification of TiO2(001) surface electronic structure by Au impurity investigated with density functional theory.Phys. Rev. B, 2009, 80(3): 035422-035430.
|
[10] |
MÁRQUEZ A M, PLATA J J, ORTEGA Y, et al. Structural defects in W-doped TiO2(101) anatase surface: density functional study. J. Phys. Chem. C, 2011, 115(34): 16970-16976.
|
[11] |
ZHANG M, JIN Z, ZHANG Z, et al. Study of strong interaction between Pt and TiO2 under oxidizing atmosphere. Appl. Surf. Sci., 2005, 250(1-4): 29-34.
|
[12] |
PERKAS N, POL V G, POL S V, et al. Golden-induced crystallization of SiO2 and TiO2 powders. Cryst. Growth Des., 2006, 6: 293-296.
|
[13] |
MA X G, TANG C Q, HUANG J Q, et al. First-principle calculations on the geometry and relaxation structure of anatase TiO2(101) surface. Acta Phys. Sin., 2006, 55(8): 4208-4214.
|
[14] |
MA X G, JIANG J J, LIANG P.Theory study of native point defects on anatase TiO2(101) surface.Acta Phys. Sin., 2008, 57(12): 3120-3125.
|
[15] |
VANDERBILT D.Soft self-consistent pseudopotentials in a generalized eigenvalue formalism.Phys. Rev. B, 1990, 41(11): 7892-7895.
|
[16] |
PERDEW J P.Density-functional approximation for the correlation energy of the inhomogeneous electron gas.Phys. Rev. B, 1986, 33: 8822-8824.
|
[17] |
SEGALL M D, LINDAN P L D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.: Condens Matter, 2002, 14(11): 2717-2744.
|
[18] |
VITTADINI A, SELLONI A.Small gold clusters on stoichiometric and defected TiO2 anatase (101) and their interaction with CO: A density functional study.J. Chem. Phys., 2002. 117(1): 353-361.
|
[19] |
WANG Y, HWANG G S.Adsorption of Au atoms on stoichiometric and reduced TiO2(110) rutile surfaces: a first principles study.Surf. Sci., 2003, 542(1/2): 72-80.
|
[20] |
IDDIR H, SKAVYSH V, ÖĞÜT S, et al. Preferential growth of Pt on rutile TiO2. Phys. Rev. B. 2006, 73(4): 041403-041406.
|
[21] |
IDDIR H, ÖĞÜT S, BROWNING N D, et al. Adsorption and diffusion of Pt and Au on the stoichiometric and reduced TiO2 rutile (110) surfaces. Phys. Rev. B, 2005, 72(8): 081407-081410.
|
[22] |
OKAZAKI K, MORIKAWA Y, TANAKA S, et al. Electronic structures of Au on TiO2(110) by first-principles calculations. Phys. Rev. B, 2004, 69(23): 235404-235411.
|
[23] |
MA X G, TANG C Q, YANG X H.Effect of relaxation on the energetics and structure of anatase TiO2(101) surface.Surf. Rev. Lett., 2006, 13(6): 825-831.
|