[1] |
KRSTIC ZORAN, KRSTIC D. VLADIMIR. Silicon nitride: the engineering material of the future. Journal of Materials Science, 2011, 47(2): 535-552.
|
[2] |
WATARI KOJI. High thermal conductivity non-oxide ceramics. Journal of the Ceramic Society of Japan, 2001, 109(1): S7-S16.
|
[3] |
PENG MENG-MENG, NING XIAO-SHAN. Sintering of β-Si3N4 powder and thermal conductivity of the ceramic. Rare Metal Materials and Engineering, 2013, 42(1): 405-408.
|
[4] |
ZHANG YING-WEI, YU JIAN-BO, XIA YONG-FENG, et al. Microstructure and mechanical performance of silicon nitride ceramic with seeds addition. Journal of Inorganic Materials, 2012, 27(8): 807-812.
|
[5] |
ZHU XIN-WEN, ZHOU YOU, HIRAO KIYOSHI. Effects of processing method and additive composition on microstructure and thermal conductivity of Si3N4 ceramics. Journal of the European Ceramic Society, 2006, 26: 711-718.
|
[6] |
ZHU XIN-WEN, ZHOU YOU, HIRAO KIYOSHI. Post-densification behavior of reaction-bonded silicon nitride (RBSN): effect of various characteristics of RBSN. Journal of Materials Science, 2004, 39(18): 5785-5797.
|
[7] |
WARARI KOJI, HIRAO KIYOSHI, BRITO E MANUEL, et al. Hot isostatic pressing to increase thermal conductivity of Si3N4 ceramics. Journal of Materials Research, 1998, 14(4): 1538-1551.
|
[8] |
WATARI KOJI, HIRSO KIYOSHI, TORIYAMA MOTOHIRO. Effect of grain size on the thermal conductivity of Si3N4. Journal of the American Ceramic Society, 1999, 82(3): 777-779.
|
[9] |
ZHOU YOU, HYUGA HIDEKI, KUSANO DAI, et al. A tough silicon nitride ceramic with high thermal conductivity. Advanced Materials, 2011, 23(39): 4563-4567.
|
[10] |
CHOI Stephen U S, ZHANG Z G, YU W, et al. Anomalous thermal conductivity enhancement in nanotube suspensions. Applied Physics Letters, 2001, 79(14): 2252-2254.
|
[11] |
HAN SEUNGJIN, CHUNG D D L. Increasing thethrough-thickness thermal conductivity of carbon fiber polymer-matrix composite by curing pressure increase and filler incorporation. Composites Science and Technology, 2011, 71(16): 1944-1952.
|
[12] |
BORRELL B, ROCHA V G, TORRECILLAS R, et al. Effect of carbon nanofibers content on thermal properties of ceramic nanocomposites. Journal of Composite Materials, 2011, 46(10): 1229-1234.
|
[13] |
YAO DONG-XU, XIA YONG-FENG, ZOU KAI-HUI, et al. Porous Si3N4 ceramics prepared via partial nitridation and SHS. Journal of the European Ceramic Society, 2013, 33(2): 371-374.
|
[14] |
YANG JIAN-FENG, ZHANG GUO-JUN, KONDO NAOKI, et al. Synthesis and properties of porous Si3N4/SiC nanocomposites by carbothermal reaction between Si3N4 and carbon. Acta Materialia, 2002, 50(19): 4831-4840.
|
[15] |
WANG XIAO-YAN, ZHU DONG-MEI, LI PENG, et al. Behavior of short carbon fibers in Cfiber/Si3N4 composites by hot pressed sintering. Journal of Reinforced Plastics and Composites, 2009, 28(2): 167-173.
|
[16] |
MAGNANT J, PAILLER R, PETITCORPS Y L, et al. Fiber-reinforced ceramic matrix composites processed by a hybrid technique based on chemical vapor infiltration, slurry impregnation and spark plasma sintering. Journal of the European Ceramic Society, 2013, 33(1): 181-190.
|
[17] |
YANG JIAN-FENG, ZHANG GUO-JUN, KONDO NAOKI, et al. Porous 2H-silicon carbide ceramics fabricated by carbothermal reaction between silicon nitride and carbon. Journal of the American Ceramic Society, 2003, 86(6): 910-914.
|
[18] |
CHOI JAE-YOUNG, KIM CHONG-HEE, KIM DO-KYUNG, et al. Carbothermic synthesis of monodispersed spherical Si3N4/SiC nanocomposite powder. Journal of the American Ceramic Society, 1999, 82(10): 2665-2671.
|
[19] |
ELIMAT Z M, HUSSAIN W T, ZIHLIF A M. PAN-based carbon fibers/PMMA composites: thermal, dielectric, and DC electrical properties. Journal of Materials Science: Materials in Electronics, 2012, 23(12): 2117-2122.
|
[20] |
KUMARI L, ZHANG T, DU G H, et al. Thermal properties of CNT-alumina nanocomposites. Composites Science and Technology, 2008, 68(9): 2178-2183.
|
[21] |
BAKSHI SRINIVAS R, BALANI KANTESH, AGARWAL ARVIND. Thermal conductivity of plasma-sprayed aluminum oxide-multiwalled carbon nanotube composites. Journal of the American Ceramic Society, 2008, 91(3): 942-947.
|