无机材料学报 ›› 2014, Vol. 29 ›› Issue (9): 897-904.DOI: 10.15541/jim20130691 CSTR: 32189.14.10.15541/jim20130691
• • 下一篇
潘春旭, 李伟平, 张豫鹏, 余超智, 黎德龙
收稿日期:
2013-12-31
修回日期:
2014-02-26
出版日期:
2014-09-17
网络出版日期:
2014-08-21
基金资助:
PAN Chun-Xu, LI Wei-Ping, ZHANG Yu-Peng, YU Chao-Zhi, LI De-Long
Received:
2013-12-31
Revised:
2014-02-26
Published:
2014-09-17
Online:
2014-08-21
Supported by:
摘要:
随着现代社会的发展和能源危机的来临, 探索和寻找新的能源材料, 开发新能源是人类的永恒课题。自2006年基于ZnO纳米线压电效应的压电式纳米电源问世以来, 又研制出多种基于纳米材料和纳米结构, 以及不同纳米效应的新型纳米电源。本文综述了近10年来, 人们在纳米电源领域的研究成果; 系统介绍了基于压电效应、摩擦效应以及石墨烯能带调控纳米电源的原理和特点, 为今后新型纳米电源的开发提供思路和参考。
中图分类号:
潘春旭, 李伟平, 张豫鹏, 余超智, 黎德龙. 基于纳米材料与纳米结构的纳米电源研究进展[J]. 无机材料学报, 2014, 29(9): 897-904.
PAN Chun-Xu, LI Wei-Ping, ZHANG Yu-Peng, YU Chao-Zhi, LI De-Long. Research Progress on Nanogenerators Based on Nanomaterials and Nanostructures[J]. Journal of Inorganic Materials, 2014, 29(9): 897-904.
[1] | CLERY D. A sustainable future, if we pay up front. Science, 2007, 315(5813): 782-783. |
[2] | WHITESIDES G M. Crabtree G W. Don’t forget long-term fundamental research in energy. Science, 2007, 315(5813): 796-798. |
[3] | POTOČNIK J. Renewable energy sources and the realities of setting an energy agenda. Science, 2007, 315(5813): 810-811. |
[4] | DUAN X, HUANG Y, AGARWAL R, et al. Single-nanowire electrically driven lasers. Nature, 2003, 421: 241-245. |
[5] | ZHENG G, PATOLSKY F, CUI Y, et al. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnology, 2005, 23: 1294-1301. |
[6] | KEMPA T J, DAY R W, KIM S K, et al. Semiconductor nanowires: a platform for exploring limits and concepts for nano-enabled solar cells. Energy Environ. Sci., 2013, 6: 719-733. |
[7] | GAO H, FU A, ANDREWS S C, et al. Cleaved-coupled nanowire lasers. PNAS, 2013, 110(3): 865-869. |
[8] | KNOLMANOV I N, DOMINGUES S H, CHOU H, et al. Reduced graphene oxide/copper nanowire hybrid films as high-perf-ormance transparent electrodes. ACS Nano, 2013, 7(2): 1811-1816. |
[9] | PARK S, RUOFF R S. Chemical methods for the production of graphenes. Nature Nanotechnology, 2009, 4: 217-224. |
[10] | 朱建国,孙小松,李卫. 电子与光电子材料. 国防工业出版社, 2007: 47-65. |
[11] | XIE HUAN, TU KUAN-SHENG, ZHAO YING, et al. Technology and application of piezoelectric nanogeneration. Silicon Valley, 2011, 23: 38-52. |
[12] | WANG Z L, SONG J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312(5771): 242-246. |
[13] | YANG R, QIN Y, DAI L, et al. Power generation with laterally packaged piezoelectric fine wires. Nature Nanotech., 2009, 4: 34-39. |
[14] | ZHU G, WANG A C, LIU Y, et al. Functional electrical stimulation by nanogenerator with 58 V output voltage. Nano Lett., 2012, 12(6): 3086-3090. |
[15] | LIN Y F, SONG J H, DING Y, et al. Piezoelectric nanogenerator using CdS nanowires. Applied Physics Letters, 2008, 92: 022105. |
[16] | QIAN F, LI Y, GRADECAK S, et al. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat. Mater., 2008, 7: 701-706. |
[17] | JOHNSON J C, CHOI H J, KNUTSEN K P, et al. Single gallium nitride nanowire lasers. Nat. Mater., 2002, 1: 106-110. |
[18] | ZHONG Z, QIAN F, WANG D, et al. Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett., 2003, 3(3): 343-346. |
[19] | KIM H M, CHO Y H, LEE H, et al. High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays. Nano Lett., 2004, 4(6): 1059-1062. |
[20] | TANG Y B, CHEN Z H, SONG H S, et al. Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells. Nano Lett., 2008, 8(2): 4191-4195. |
[21] | HUANG C T, SONG J H, LEE W F, et al. GaN nanowire arrays for high-output nanogenerators. J. Am. Chem. Soc., 2010, 132(13): 4766-4771. |
[22] | CHEN X, XU S, YAO N, et al. 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett., 2010, 10(6): 2133-2137. |
[23] | CHANG C, TRAN V H, WANG J, et al. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett., 2010, 10(2): 726-731. |
[24] | HUANG C T, SONG J, TSAI C M, et al. Single-InN-nanowire nanogenerator with upto 1 V output voltage. Adv. Mater., 2010, 22(36): 4008-4013. |
[25] | WANG X, SONG J, LIU, J, et al. Direct-current nanogenerator driven by ultrasonic waves. Science, 2007, 316(5821): 102-105. |
[26] | HU Y, ZHANG Y, XU C, et al. High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display. Nano Lett., 2010, 10(12): 5025-5031. |
[27] | WANG ZHONG-LIN. Piezoelectric nanogenerators-their principle and potential applications. Physics, 2006, 35(11): 897-903. |
[28] | WANG ZHONG-LIN. Sustainable self-sufficient power source for micro/nano-systems: a new field in energy research. Chinese Science Bulletin, 2010, 55(25): 2472-2475. |
[29] | WANG ZHONG-LIN. Commercial applications of nanogenerators as sustainable power source and active sensors. Scientia Sinica (Chimica), 2013, 43(6): 759-762. |
[30] | FAN F R, LIN L, ZHU G, et al. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett., 2012, 12(6): 3109-3114. |
[31] | WANG Z L, ZHU G, YANG Y, et al. Progress in nanogenerators for portable electronics. Materials Today, 2012, 15(12): 532-543. |
[32] | KULAH H, NAJAFI K. Energy scavenging from low-frequency vibrations by using frequency up-conversion for wireless sensor applications. IEEE Sensors Journal, 2008, 8(3): 261-268. |
[33] | CHEN J, ZHU G, YANG W, et al. Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Adv. Mater., 2013, 25(42): 6094-6099. |
[34] | ZHANG X S, HAN M D, WANG R X, et al. Frequency- multiplicaiton high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett., 2013, 13(3): 1168-1172. |
[35] | TANKOVIC S, DIKIN D A, DOMMETT G H B, et al. Graphene- based composite materials. Nature, 2006, 442: 282-286. |
[36] | 朱宏伟,徐志平,谢 丹. 石墨烯—结构、制备方法与性能表征. 北京: 清华大学出版社, 2011: 62-69. |
[37] | CHANG C P, WU B R, CHEN P B. Deformation effect on electronic and optical properties of nanographite ribbons. J. Appl. Phys., 2007, 101: 063506. |
[38] | GUI G, LI J, ZHONG J. Band structure engineering of graphene by strain: first-principles calculations. Phys. Rev. B, 2008, 78: 075435. |
[39] | Ni Z H, Yu T, Lu Y H, et al. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano, 2008, 2(11): 2301-2305. |
[40] | HUANG M, PASCAL T A, KIM H, et al. Electronic-mechanical coupling in graphene from in situ nanoindentation experiments and multiscale atomistic simulations. Nano Lett., 2011, 11(3): 1241-1246. |
[41] | ZHANG Y P, LUO C Z, LI W P, et al. Strain induced chemical potential difference between monolayer graphene sheets. Nanoscale, 2013, 5(7): 2616-2619. |
[42] | DHIMAN P, YANARI F, MI X, et al. Harvesting energy from water flow over graphene. Nano Lett., 2011, 11(8): 3123-3127. |
[43] | GUO W, CHENG C, WU Y, et al. Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane. Advanced Materials, 2013, 25(42): 6064-6068. |
[1] | 李红兰, 张俊苗, 宋二红, 杨兴林. Mo/S共掺杂的石墨烯用于合成氨: 密度泛函理论研究[J]. 无机材料学报, 2024, 39(5): 561-568. |
[2] | 孙川, 何鹏飞, 胡振峰, 王荣, 邢悦, 张志彬, 李竞龙, 万春磊, 梁秀兵. 含有石墨烯阵列的SiC基陶瓷材料的制备与力学性能[J]. 无机材料学报, 2024, 39(3): 267-273. |
[3] | 王艳莉, 钱心怡, 沈春银, 詹亮. 石墨烯基介孔锰铈氧化物催化剂: 制备和低温催化还原NO[J]. 无机材料学报, 2024, 39(1): 81-89. |
[4] | 杨平军, 李铁虎, 李昊, 党阿磊. 石墨烯对环氧树脂泡沫炭石墨化、电导率和力学性能的影响[J]. 无机材料学报, 2024, 39(1): 107-112. |
[5] | 董怡曼, 谭占鳌. 宽带隙钙钛矿基二端叠层太阳电池复合层的研究进展[J]. 无机材料学报, 2023, 38(9): 1031-1043. |
[6] | 冒爱琴, 陆文宇, 贾洋刚, 王冉冉, 孙静. 柔性压电器件及其可穿戴应用[J]. 无机材料学报, 2023, 38(7): 717-730. |
[7] | 陈赛赛, 庞雅莉, 王娇娜, 龚䶮, 王锐, 栾筱婉, 李昕. 绿-黄可逆电热致变色织物的制备及其性能[J]. 无机材料学报, 2022, 37(9): 954-960. |
[8] | 孙铭, 邵溥真, 孙凯, 黄建华, 张强, 修子扬, 肖海英, 武高辉. RGO/Al复合材料界面性质第一性原理研究[J]. 无机材料学报, 2022, 37(6): 651-659. |
[9] | 安琳, 吴淏, 韩鑫, 李耀刚, 王宏志, 张青红. 非贵金属Co5.47N/N-rGO助催化剂增强TiO2光催化制氢性能[J]. 无机材料学报, 2022, 37(5): 534-540. |
[10] | 王虹力, 王男, 王丽莹, 宋二红, 赵占奎. 功能化石墨烯担载型AuPd纳米催化剂增强甲酸制氢反应[J]. 无机材料学报, 2022, 37(5): 547-553. |
[11] | 董淑蕊, 赵笛, 赵静, 金万勤. 离子化氨基酸对氧化石墨烯膜渗透汽化过程中水选择性渗透的影响[J]. 无机材料学报, 2022, 37(4): 387-394. |
[12] | 蒋丽丽, 徐帅帅, 夏宝凯, 陈胜, 朱俊武. 缺陷调控石墨烯复合催化剂在氧还原反应中的作用[J]. 无机材料学报, 2022, 37(2): 215-222. |
[13] | 黄田, 赵运超, 李琳琳. 压电半导体纳米材料在声动力疗法中的应用进展[J]. 无机材料学报, 2022, 37(11): 1170-1180. |
[14] | 吴静, 余立兵, 刘帅帅, 黄秋艳, 姜姗姗, ANTON Matveev, 王连莉, 宋二红, 肖蓓蓓. NiN4/Cr修饰的石墨烯电化学固氮电极[J]. 无机材料学报, 2022, 37(10): 1141-1148. |
[15] | 李铁, 李玥, 王颖异, 张珽. 石墨烯-铁酸铋纳米晶复合材料的制备及其催化性能研究[J]. 无机材料学报, 2021, 36(7): 725-732. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||