无机材料学报 ›› 2015, Vol. 30 ›› Issue (2): 153-158.DOI: 10.15541/jim20140291 CSTR: 32189.14.10.15541/jim20140291
李 艳1,2, 崔 红2, 张华坤2, 嵇阿琳2, 介玉洁2
收稿日期:
2014-06-04
修回日期:
2014-07-30
出版日期:
2015-02-20
网络出版日期:
2015-01-27
作者简介:
李 艳(1980–),女,博士研究生,高级工程师. E-mail:icering604@126.com
基金资助:
LI Yan1,2, CUI Hong2, ZHANG Hua-Kun2, JI A-Lin2, JIE Yu-Jie2
Received:
2014-06-04
Revised:
2014-07-30
Published:
2015-02-20
Online:
2015-01-27
About author:
LI Yan. E-mail:icering604@126.com
Supported by:
摘要:
以整体毡为纤维增强体, 采用外壁恒温控温和内壁恒温控温两种方式, 通过热梯度化学气相渗透(TG-CVI)工艺研究了大尺寸C/C复合材料的致密化行为。结果表明, 外壁恒温控温方式制备的试样密度仅为0.64 g/cm3, 呈现出两边高中间低的特点, 热解碳结构为粗糙层与光滑层相结合。而内壁恒温控温方式制备的试样密度达到0.98 g/cm3, 致密效率相比提高了73.79%, 热解碳结构为具有优异性能的粗糙层结构, 试样内部密度分布均匀。通过与外壁恒温控温相比, 内壁恒温控温方式具有较高的温度和合适的温度梯度, 致密化行为符合理想致密化模型, 能够实现大尺寸C/C复合材料由内至外的正向密度增长, 致密均匀, 致密效率高, 且碳结构优异。
中图分类号:
李 艳, 崔 红, 张华坤, 嵇阿琳, 介玉洁. 热梯度CVI制备大尺寸C/C复合材料的致密化行为[J]. 无机材料学报, 2015, 30(2): 153-158.
LI Yan, CUI Hong, ZHANG Hua-Kun, JI A-Lin, JIE Yu-Jie. Densification Behavior of Thermal Gradient CVI of Large-scale C/C Composites[J]. Journal of Inorganic Materials, 2015, 30(2): 153-158.
图3 A、B试样不同位置温度随致密化时间变化关系图
Fig. 3 Temperature changes of samples prepared under out (A) and inner(B) wall temperature controlling at different densification time
图4 恒温600 h后A、B试样不同位置SEM照片
Fig. 4 SEM images of sample A and B at different positions after densification for 600 h (a, c and e): Inner wall, central section and outer wall of sample A, respectively, under outer wall temperature controlling; (b, d and f): Inner wall, central section and outer wall of sample B under inner wall temperature controlling
图5 A、B试样不同部位热解碳偏光显微照片
Fig. 5 PLM of pyrocarbon of samples A and B at different positions (a, c and e): Inner wall, central section and outer wall of sample A, respectively, under outer wall temperature controlling, and Ae values were 16°-18°; 16°-18° and 18°-20°, respectively. (b, d and f): Inner wall, central section and outer wall of sample B, respectively, under inner wall temperature controlling, and all Ae values were 18°-20°
图6 不同致密时间后A试样在恒温致密化300 h(a)和600 h(b)时的CT曲线图
Fig. 6 CT curves of sample A under outer wall temperature controlling after densification for 300 h (a) and 600 h (b)
图7 不同致密时间后B试样在恒温致密化300 h(a)和600 h(b)的CT曲线图
Fig. 7 CT curves of sample B under inner wall temperature controlling after densification for 300 h (a) and 600 h (b)
图8 两种试样沉积600 h后CT剖面图
Fig. 8 CT images on cross section of samples under out wall (a) and inner wall (b) temperature controlling after densification for 600 h
[1] | ZOU ZHI-QIANG, TANG ZHONG-HUA, XIONG JIE.The manufacturing of C/C composite brake disk by means of thermal gradient densification technique.New Carbon Materials, 2000, 15(2): 22-27. |
[2] | DELHAES P.Chemical vapor deposition and infiltration processes of carbon materials. Carbon, 2002, 40: 641-657. |
[3] | WANG JI-PING, QIAN JUN-MING, QIAO GUAN-JUN, et al.A rapid fabracation of composites by a thermal gradient chemical vapor infiltration method with vaporized kerosene as a precursor.Materials Chemistry and Physics, 2007, 101: 7-11. |
[4] | LI HE-JUN.Carbon/carbon composites.New Carbon Materials, 2001, 16(2): 79-80. |
[5] | ZHANG WEI-GANG, HU Z J, HÜTTINGRT K J. Chemical vapor infiltration of carbon fiber felt:optimization of densition and carbon microstruction.Carbon, 2002, 40: 2529-2545. |
[6] | HU Z. J, ZHANG WEI-GANG, HÜTTINGRT K J, et al. Influence of pressure,temeperature and suface area/volume ratio on the texture of pyrolytic carbon deposited from methane.Carbon, 2003, 41: 749-758. |
[7] | PAUW V D, COLLIN A, SEND W, et al.Deposition rates during the early stages of pyrolytic carbon deposition in a hot-wall reactor and the development of textrue.Carbon, 2006, 44: 3091-3101. |
[8] | HU ZI-JUN, HÜTTINGR K J. Chemical vapor infiltration of carbon revised Part Ⅱ: Experimental results. Carbon, 2001, 39: 1023-1032. |
[9] | ZHANG WEI-GANG, HÜTTINGR K J. Densification of a 2D carbon fiber perform by isothermal,isobaric CVI:Kinetics and carbon microstructurec CVI:Kinetics and carbon microstructure.Carbon, 2003, 41: 2325-2337. |
[10] | WU XIAO-JUN, CHENG WEN, QIAO SHENG-RU, et al.Fast densification of thick-walled carbon/carbon composite tubes using electrically coupled chemical vapor infiltration. Carbon, 2013, 57: 371-379. |
[11] | SUN GUO-LING, LI HE-JUN, QI LE-HUA, et al.Analysis of unstable temperature field for theraml gradient CVI densification process of C/C composite.Acta Metallurgica Sinica, 2006, 42(10): 1046-1050. |
[12] | GUELLALI M, OBERACKER R, HOFFMANN M J, et al.Textures of pyrolytic carbon formed in the chemical vapor infiltration of capillaries.Carbon, 2003, 41: 97-104. |
[13] | YIN JIAN, ZHANG HONG-BO, XIONG XIANG, et al.Influence of microstructure of pyrocarbon on ablation performances of C/C composites.Chinese Journal of Materials Research, 2007, 21(1): 10-14. |
[14] | YAN GUI-SHEN, LI HE-JUN, ZHANG SHOU-YANG, et al.Densification mechanism of perform with thermal gradient CVI.Acta Materiae Compositae Silica, 2003, 20(2): 64-70. |
[15] | DENG JING-YI,LIU WEN-CHUAN,DU HAI-FENG, et al. Control of the deposition temperature in thermal gradient CVI. Carbon Techniques, 1999(6): 22-24. |
[16] | LI JIAN-LI,SU ZHE-AN,ZHANG MING-YU, et al.Mehanism of densification of C/C composites fabricated with high density perform.Journal of Inorganic Materials, 2011, 26(7): 711-714. |
[1] | 马永杰, 刘永胜, 关康, 曾庆丰. CH4+C2H5OH+Ar体系热解的气相动力学研究[J]. 无机材料学报, 2024, 39(11): 1235-1244. |
[2] | 丁宁宁, 孙建华, 韦旭, 孙丽霞. 对氨基苯磺酸修饰MoO3/PPy复合材料室温下对氨气的监测[J]. 无机材料学报, 2024, 39(11): 1245-1253. |
[3] | 周云凯, 刁亚琪, 王明磊, 张宴会, 王利民. 聚苯胺改性Ti3C2(OH)2抗氧化性的第一性原理计算研究[J]. 无机材料学报, 2024, 39(10): 1151-1158. |
[4] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[5] | 全文心, 余艺平, 方冰, 李伟, 王松. 管状C/SiC复合材料高温空气氧化行为与宏细观建模研究[J]. 无机材料学报, 2024, 39(8): 920-928. |
[6] | 马彬彬, 钟婉菱, 韩涧, 陈椋煜, 孙婧婧, 雷彩霞. ZIF-8/TiO2复合介观晶体的制备及光催化活性[J]. 无机材料学报, 2024, 39(8): 937-944. |
[7] | 姜灵毅, 庞生洋, 杨超, 张悦, 胡成龙, 汤素芳. C/SiC-BN复合材料的制备及氧化行为[J]. 无机材料学报, 2024, 39(7): 779-786. |
[8] | 粟毅, 史扬帆, 贾成兰, 迟蓬涛, 高扬, 马青松, 陈思安. 浆料浸渍辅助PIP工艺制备C/HfC-SiC复合材料的微观结构及性能研究[J]. 无机材料学报, 2024, 39(6): 726-732. |
[9] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[10] | 张育育, 吴轶城, 孙佳, 付前刚. 聚合物转化SiHfCN陶瓷的制备及其吸波性能[J]. 无机材料学报, 2024, 39(6): 681-690. |
[11] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[12] | 管皞阳, 张立, 荆开开, 师维刚, 王晶, 李玫, 刘永胜, 张程煜. 国产三代2.5D SiCf/SiC复合材料的界面力学性能[J]. 无机材料学报, 2024, 39(3): 259-266. |
[13] | 郭凌翔, 唐颖, 黄世伟, 肖博澜, 夏东浩, 孙佳. C/C复合材料高熵氧化物涂层抗烧蚀性能[J]. 无机材料学报, 2024, 39(1): 61-70. |
[14] | 吴军, 徐培飞, 荆瑞, 张大海, 费庆国. SiC/SiC复合材料层板低速冲击及其剩余强度试验研究[J]. 无机材料学报, 2024, 39(1): 51-60. |
[15] | 师维刚, 张超, 李玫, 王晶, 张程煜. 2D-SiCf/SiC复合材料层间I型断裂试验及表征[J]. 无机材料学报, 2024, 39(1): 45-50. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||