| [1] | SEKHAR M C, VEENA E, KUMAR N S, et al. A review on piezoelectric materials and their applications. Crystal Research and Technology, 2023,  58(2): 2200130. | 
																													
																						| [2] | WU J G. Perovskite lead-free piezoelectric ceramics. Journal of Appealed Physics, 2020,  127(19): 190901. | 
																													
																						| [3] | MU G H, YANG S Y, LI X, et al. Several problems in PZT piezoelectric ceramics preparation. Material Reports, 2004,  18(3): 32. | 
																													
																						| [4] | PANDA P K, SAHOO B. PZT to lead-free piezoceramics: a review. Ferroelectrics, 2015,  474(1): 128. | 
																													
																						| [5] | ZHANG D S, TIAN A F. Electrical properties of K0.5Na0.5NbO3 lead-free piezoceramics by pressureless sintering. Journal of Inorganic Materials, 2013,  28(9): 967. | 
																													
																						| [6] | WANG K, LI J F. Phase transition, sintering and property enhancement. Journal of Advanced Ceramics, 2012,  1(1): 24. | 
																													
																						| [7] | ROEDEL J, WEBBER K G, DITTMER R, et al. Transferring lead-free piezoelectric ceramics into application. Journal of the European Ceramic Society, 2015,  35(6): 1659. | 
																													
																						| [8] | WANG K, SHEN Z Y, ZHANG B P, et al. (K,Na)NbO3-based lead-free piezoceramics: status, prospects and challenges. Journal of Inorganic Materials, 2014,  29(1): 15. | 
																													
																						| [9] | YAO F Z, WU C F, LI J F, et al. Recent development on (K,Na)NbO3-based lead-free piezoceramics. Journal of the Chinese Ceramic Society, 2022,  50(3): 587. | 
																													
																						| [10] | SAITO Y, TAKAO H, TANI T, et al. Lead-free piezoceramics. Nature, 2004, 432: 84. | 
																													
																						| [11] | XU K, LI J, LV X, et al. Superior piezoelectric properties in potassium-sodium niobate lead-free ceramic. Advanced Materials, 2018,  28(38): 8519. | 
																													
																						| [12] | TAO H, WU H, LIU Y, et al. Ultrahigh performance in lead-free piezoceramics utilizing a relaxor slush polar state with multiphase coexistence. Journal of the American Chemical Society, 2019,  141(35): 13987. | 
																													
																						| [13] | LIU Q, LI J F, ZHAO L, et al. Niobate-based lead-free piezoceramics: a diffused phase transition boundary leading to temperature-insensitive high piezoelectric voltage coefficients. Journal of Material Chemistry, 2018,  6(5): 1116. | 
																													
																						| [14] | ZHOU C M, ZHANG J L, YAO W Z, et al. Remarkably strong piezoelectricity, rhombohedral-orthorhombic-tetragonal phase coexistence and domain structure of (K,Na)(Nb,Sb)O3-(Bi,Na)ZrO3- BaZrO3 ceramics. Journal of Alloys and Compounds, 2020, 820: 153411. | 
																													
																						| [15] | KIM H, KIM D S, CHAE S J, et al. Simultaneous realization of high d33 and large strain in (K,Na,Li)(Nb,Sb)O3-(Ca,Sr)ZrO3 materials and their application in piezoelectric actuators. Ceramics International, 2021,  47(24): 34443. | 
																													
																						| [16] | LIU Q, ZHANG X, GAO J, et al. Practical high-performance lead-free piezoelectrics: structural flexibility beyond utilizing multiphase coexistence. National Science Reveal, 2020,  7(2): 355. | 
																													
																						| [17] | DU H L, ZHANG M, SU X L, et al. Developments of grain oriented growth techniques of piezoelectric ceramics. Journal of Inorganic Materials, 2008,  23(1): 1. | 
																													
																						| [18] | LEE G S, KIM J S, KIM S H, et al. Recent developments in (K,Na)NbO3-based lead-free piezoceramics. Micromachines, 2024,  15(3): 325. | 
																													
																						| [19] | LI P, ZHAI J W, SHEN B, et al. Ultrahigh piezoelectric properties in textured (K,Na)NbO3-based lead-free ceramics. Advanced Materials, 2018,  30(8): 1705171. | 
																													
																						| [20] | KIM D S, EUM J M, GO S H, et al. Remarkable piezoelectric performance and good thermal stability of <001>-textured 0.96(K0.5Na0.5)(Nb1-ySby)O3-0.04SrZrO3 lead-free piezoelectric ceramics. Journal of Alloys and Compounds, 2021, 882: 160662. | 
																													
																						| [21] | GO S H, KIM H, KIM D S, et al. Improvement of piezoelectricity of (Na, K)Nb-based lead-free piezoceramics using [001]-texturing for piezoelectric energy harvesters and actuators. Journal of the European Ceramic Society, 2022,  42(14): 6478. | 
																													
																						| [22] | LIU D, ZHU L F, TANG T, et al. Textured potassium sodium niobate lead-free ceramics with high d33 and Qm for meeting high-power applications. ACS Applied Materials and Interfaces, 2024,  16(6): 7444. | 
																													
																						| [23] | ZHENG T, YU Y G, LEI H B, et al. Compositionally graded KNN-based multilayer composite with excellent piezoelectric temperature stability. Advanced Materials, 2022,  34(8): 2109175. | 
																													
																						| [24] | SONG A Z, LIU Y X, FENG T Y, et al. Simultaneous enhancement of piezoelectricity and temperature stability in KNN-based lead-free ceramics via layered distribution of dopants. Advanced Functional Materials, 2022,  32(34): 2204385. | 
																													
																						| [25] | ZHAO J B, DU H L, QU S B, et al. Improvement in the piezoelectric temperature stability of (K0.5Na0.5)NbO3 ceramics. Chinese Science Bulletin, 2011,  56(22): 2389. | 
																													
																						| [26] | YIN B Y, HUAN Y, WANG Z X, et al. Enhanced thermal reliability of Mn-doped (K, Na)NbO3-based piezoelectric ceramics. Journal of Materials Science: Materials in Electronics, 2019,  30(20): 18659. | 
																													
																						| [27] | CHENG Y, XING J, LI X, et al. Meticulously tailoring phase boundary in KNN-based ceramics to enhance piezoelectricity and temperature stability. Journal of the American Ceramic Society, 2022,  105(8): 5213. |