无机材料学报 ›› 2025, Vol. 40 ›› Issue (1): 61-69.DOI: 10.15541/jim20240176 CSTR: 32189.14.10.15541/jim20240176
刘会来1,2(), 李志豪1,2, 孔德峰1,2, 陈星1,2(
)
收稿日期:
2024-04-10
修回日期:
2024-06-20
出版日期:
2025-01-20
网络出版日期:
2024-06-24
通讯作者:
陈星, 研究员. E-mail: xingchen@hfut.edu.cn作者简介:
刘会来(1996-), 男, 博士研究生. E-mail: 1141749101@qq.com
基金资助:
LIU Huilai1,2(), LI Zhihao1,2, KONG Defeng1,2, CHEN Xing1,2(
)
Received:
2024-04-10
Revised:
2024-06-20
Published:
2025-01-20
Online:
2024-06-24
Contact:
CHEN Xing, professor. E-mail: xingchen@hfut.edu.cnAbout author:
LIU Huilai (1996-), male, PhD candidate. E-mail: 1141749101@qq.com
Supported by:
摘要:
研发具有高活性和高稳定的电极材料, 是实现电芬顿体系高效降解磺胺类抗生素污染物的关键。本工作以MXene材料作为载体负载酞菁铁(FePc), 制备了FePc/MXene纳米复合材料, 并利用其作为阴极催化剂构建的电芬顿体系对磺胺间二甲氧嘧啶(SDM)进行降解。负载FePc后, 纳米复合材料依然保持手风琴状的片层结构, 并且表面略粗糙, 层间间距变小; FePc/MXene中FeNx的配位数约为4, 且FePc与MXene之间的相互作用促进了电极表面的电子转移。在构建的电芬顿体系中, FePc/MXene电极在50 min内对SDM的降解率达到97.2%, 且在较宽的pH范围内表现出优异的催化性能和稳定性。降解性能显著提高主要归因于复合材料中引入FeN4增强了O2电催化还原为H2O2的活性。电芬顿体系主要通过自由基(·OH和·O2-)与非自由基(1O2)共同降解SDM。利用前沿轨道理论和Fukui函数阐明了SDM被不同活性物种攻击的位点, 降解途径主要有苯环的羟基化、苯环上氨基的氧化、C-S和S-N键断裂。此外, 循环和离子浸出实验证明所制备的阴极催化剂具有优异的稳定性。
中图分类号:
刘会来, 李志豪, 孔德峰, 陈星. 酞菁铁/MXene复合阴极的制备及电芬顿降解磺胺间二甲氧嘧啶[J]. 无机材料学报, 2025, 40(1): 61-69.
LIU Huilai, LI Zhihao, KONG Defeng, CHEN Xing. Preparation of FePc/MXene Composite Cathode and Electro-Fenton Degradation of Sulfadimethoxine[J]. Journal of Inorganic Materials, 2025, 40(1): 61-69.
图4 Fe箔、FePc和FePc/MXene的Fe K-edge XANES曲线(a)和R空间EXAFS曲线(b)
Fig. 4 Fe K-edge XANES curves (a) and EXAFS curves in R space (b) of Fe foil, FePc and FePc/MXene
图6 电芬顿体系中不同实验条件下SDM的降解率和动力学曲线
Fig. 6 SDM degradation rates and kinetics curves in the electro-Fenton system under different experimental conditions (a) Different cathode materials; (b) Initial SDM concentration; (c) Current density; (d) Initial pH
图7 BQ、TBA和L-组氨酸对SDM降解的影响(a)以及电芬顿体系中产生的·OH、·O2-和1O2的ESR谱图(b)
Fig. 7 (a) Effects of BQ, TBA and L-tryptophan radical scavengers on SDM degradation, and (b) ESR spectra of ·OH, ·O2- and 1O2 generated by catalyst in the electro-Fenton system
图8 SDM的几何优化构型
Fig. 8 Molecular geometry optimization of SDM (a) Optimized geometric structure; (b) HOMO and (c) LUMO distributions; (d) Molecular electrostatic potential; (e) Calculated Fukui index; (f) Degradation pathways of SDM
图S1 MXene和FePc/MXene的N2吸附-脱附等温线(a)及相应的孔径分布曲线(b)
Fig. S1 N2 adsorption-desorption isotherms (a) and corresponding pore size distribution curves (b) of MXene and FePc/MXene Colorful figure is available on website
图S5 FePc/MXene电极反应前后的SEM照片(a)和XRD图谱(b)
Fig. S5 SEM images (a) and XRD patterns (b) of FePc/MXene electrode before and after reaction Colorful figure is available on website
Sample | Shell | CN | R/Å | σ2/(×10-3, Å2) | ΔE0/eV | R factor/% |
---|---|---|---|---|---|---|
FePc | Fe-N | 4.0 | 1.93 | 7.9 | 3.2 | 1.8 |
FePc/MXene | Fe-N | 4.1 | 1.96 | 1.1 | 5.1 | 1.5 |
表S1 FePc和FePc/MXene中Fe K-edge的EXAFS拟合参数
Table S1 EXAFS fitting parameters of Fe K-edge in FePc and FePc/MXene
Sample | Shell | CN | R/Å | σ2/(×10-3, Å2) | ΔE0/eV | R factor/% |
---|---|---|---|---|---|---|
FePc | Fe-N | 4.0 | 1.93 | 7.9 | 3.2 | 1.8 |
FePc/MXene | Fe-N | 4.1 | 1.96 | 1.1 | 5.1 | 1.5 |
[1] | KEBEDE T G, DUBE S, NINDI M M. Application of mesoporous nanofibers as sorbent for removal of veterinary drugs from water systems. Science of the Total Environment, 2020, 738: 140282. |
[2] | ZHOU M H, TAN Q Q, WANG Q, et al. Degradation of organics in reverse osmosis concentrate by electro-Fenton process. Journal of Hazardous Materials, 2012, 215/216: 287. |
[3] |
BEDIOUI F, GRIVEAU S, NYOKONG T, et al. Tuning the redox properties of metalloporphyrin- and metallophthalocyanine-based molecular electrodes for the highest electrocatalytic activity in the oxidation of thiols. Physical Chemistry Chemical Physics, 2007, 9(26): 3383.
DOI PMID |
[4] | FENG Y C, WANG X, WANG D. Metal porphyrins and metal phthalocyanines as designable molecular model electrocatalysts. Materials Chemistry Frontiers, 2024, 8(1): 228. |
[5] | LI M, LI Z L, YU X L, et al. FeN4-doped carbon nanotubes derived from metal organic frameworks for effective degradation of organic dyes by peroxymonosulfate: impacts of FeN4 spin states. Chemical Engineering Journal, 2022, 431: 133339. |
[6] | TANIGUCHI T, TATEISHI H, MIYAMOTO S, et al. A self-assembly route to an iron phthalocyanine/reduced graphene oxide hybrid electrocatalyst affording an ultrafast oxygen reduction reaction. Particle & Particle Systems Characterization, 2013, 30(12): 1063. |
[7] | XIA M T, CHEN B J, GU F, et al. Ti3C2Tx MXene nanosheets as a robust and conductive tight on Si anodes significantly enhance electrochemical lithium storage performance. ACS Nano, 2020, 14(4): 5111. |
[8] | WANG S Y, FENG A H, LI X Y, et al. Pb(II) adsorption process of Fe3O4supported Ti3C2Tx. Journal of Inorganic Materials, 2023, 38(5): 521. |
[9] | WEN Y Y, RUFFORD T E, CHEN X Z, et al. Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy, 2017, 38: 368. |
[10] |
LI N, KONG Z Z, CHEN X Z, et al. Research progress of novel two-dimensional materials in photocatalysis and electrocatalysis. Journal of Inorganic Materials, 2020, 35(7): 735.
DOI |
[11] | CHEN C, WANG T H, ZHAO X D, et al. Customizing hydrophilic terminations for V2CTx MXene toward superior hybrid-ion storage in aqueous zinc batteries. Advanced Functional Materials, 2024, 34(9): 2308508. |
[12] | FEI L, LEI L, WANG D G. Progress of two-dimensional MXene in new-type thin-film solar cells. Journal of Inorganic Materials, 2024, 39(2): 215. |
[13] | XUE Q, ZHANG H, ZHU M, et al. Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging. Advanced Materials, 2017, 29(15): 1604847. |
[14] | ZOROMBA M S, ALHARBI F, AL-HOSSAINY A F, et al. Preparation of hybrid conducting polymers blend nanocomposite for energy conversion using experimental data and TD-DFT/DMOl3 computations. Journal of Materials Research and Technology, 2023, 23: 2852. |
[15] | ZHANG H L, LI M, ZHU C X, et al. Preparation of magnetic α-Fe2O3/ZnFe2O4@Ti3C2 MXene with excellent photocatalytic performance. Ceramics International, 2020, 46(1): 81. |
[16] | ZHANG H L, LI M, CAO J L, et al. 2D a-Fe2O3 doped Ti3C2 MXene composite with enhanced visible light photocatalytic activity for degradation of Rhodamine B. Ceramics International, 2018, 44(16): 19958. |
[17] | ZHAO Y X, LIU J X, ZHANG T, et al. Synthesis of novel hollow carbon nanotubes@Co-Fe alloy/iron phthalocyanine electrocatalyst by self-assembly method for OER and ORR study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 684: 133093. |
[18] | DING Z B, XU X T, LI J B, et al. Nanoarchitectonics from 2D to 3D: MXenes-derived nitrogen-doped 3D nanofibrous architecture for extraordinarily-fast capacitive deionization. Chemical Engineering Journal, 2022, 430: 133161. |
[19] | LI T F, YAO L L, LIU Q L, et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment. Angewandte Chemie International Edition, 2018, 57(21): 6115. |
[20] | LI L F, WEN Y D, HAN G K, et al. Tailoring the stability of Fe-N-C via pyridinic nitrogen for acid oxygen reduction reaction. Chemical Engineering Journal, 2022, 437: 135320. |
[21] | MIČUŠÍK M, ŠLOUF M, STEPURA A, et al. Aging of 2D MXene nanoparticles in air: an XPS and TEM study. Applied Surface Science, 2023, 610: 155351. |
[22] | ZHANG Q, GUO D, YANG Y L, et al. Enhanced electrocatalytic performance of 2D/2D MXene/reduced graphene oxide (RGO) heterostructures for paracetamol (APAP) degradation: the critical contributions of charge transfer and Ti-OH edges for active species generation. Journal of Environmental Chemical Engineering, 2023, 11(3): 110193. |
[23] | LI Z L, ZHUANG Z C, LV F, et al. The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis: Fe3d electron delocalization matters. Advanced Materials, 2018, 30(43): 1803220. |
[24] | GAO M S, SUN Y, ZHAO K, et al. FePc/MXene as an efficient catalyst for the selective electroreduction of CO2 into CO in a flow cell. Journal of Environmental Chemical Engineering, 2024, 12(1): 111802. |
[25] | XIAO M L, XING Z H, JIN Z, et al. Preferentially engineering FeN4 edge sites onto graphitic nanosheets for highly active and durable oxygen electrocatalysis in rechargeable Zn-air batteries. Advanced Materials Interfaces, 2020, 32(49): e2004900. |
[26] | CHEN G B, AN Y, LIU S W, et al. Highly accessible and dense surface single metal FeN4 active sites for promoting the oxygen reduction reaction. Energy & Environmental Science, 2022, 15(6): 2619. |
[27] | LIU Y, WEERASOORIYA R, CHEN X. The metal-organic framework supported gold nanoparticles as a highly sensitive platform for electrochemical detection of methyl mercury species in the aqueous environment. Journal of Hazardous Materials, 2022, 431: 128608. |
[28] |
FRANZ J A, WILLIAMS R J, FLORA J R V, et al. Electrolytic oxygen generation for subsurface delivery: effects of precipitation at the cathode and an assessment of side reactions. Water Research, 2002, 36(9): 2243.
PMID |
[29] |
LU T, CHEN Q X. Van der Waals potential: an important complement to molecular electrostatic potential in studying intermolecular interactions. Journal of Molecular Modeling, 2020, 26(11): 315.
DOI PMID |
[1] | 曹青青, 陈翔宇, 吴健豪, 王筱卓, 王乙炫, 王禹涵, 李春颜, 茹菲, 李兰, 陈智. SiO2增强自敏性氮化碳微球可见光降解盐酸四环素的研究[J]. 无机材料学报, 2024, 39(7): 787-792. |
[2] | 汤亚, 孙盛睿, 樊佳, 杨庆峰, 董满江, 寇佳慧, 刘阳桥. 粉煤灰衍生水合硅酸钙PEI改性及吸附去除Cu(II)与催化降解有机污染物[J]. 无机材料学报, 2023, 38(11): 1281-1291. |
[3] | 郭春霞, 陈伟东, 闫淑芳, 赵学平, 杨傲, 马文. 埃洛石纳米管负载锆氧化物吸附水中砷的研究[J]. 无机材料学报, 2023, 38(5): 529-536. |
[4] | 伍林, 胡明蕾, 王丽萍, 黄少萌, 周湘远. TiHAP@g-C3N4异质结的制备及光催化降解甲基橙[J]. 无机材料学报, 2023, 38(5): 503-510. |
[5] | 肖瑶, 吴中杰, 崔美, 苏荣欣, 谢连科, 黄仁亮. 生物炭-膨润土共改性及其铅离子吸附与稳定化研究[J]. 无机材料学报, 2021, 36(10): 1083-1090. |
[6] | 张东硕,蔡昊,高凯茵,马子川. Zn2SiO4-ZnO-生物炭复合物的制备及其可见光催化H2O2降解甲硝唑[J]. 无机材料学报, 2020, 35(8): 923-930. |
[7] | 胡晓丹, 周志伟, 张 伟, 张晓红, 张海黔. 磁性纳米CeO2/Fe3O4非均相Fenton反应催化降解氧氟沙星[J]. 无机材料学报, 2016, 31(6): 613-620. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||