无机材料学报 ›› 2025, Vol. 40 ›› Issue (1): 53-60.DOI: 10.15541/jim20240140 CSTR: 32189.14.10.15541/jim20240140
连敏丽(), 苏佳欣, 黄鸿杨, 嵇玉寅, 邓海帆, 张彤, 陈崇启, 李达林(
)
收稿日期:
2024-03-22
修回日期:
2024-07-19
出版日期:
2025-01-20
网络出版日期:
2024-07-26
通讯作者:
李达林, 研究员. E-mail: dalinli@fzu.edu.cn作者简介:
连敏丽(1999-), 女, 硕士研究生. E-mail: 975216049@qq.com
基金资助:
LIAN Minli(), SU Jiaxin, HUANG Hongyang, JI Yuyin, DENG Haifan, ZHANG Tong, CHEN Chongqi, LI Dalin(
)
Received:
2024-03-22
Revised:
2024-07-19
Published:
2025-01-20
Online:
2024-07-26
Contact:
LI Dalin, professor. E-mail: dalinli@fzu.edu.cnAbout author:
LIAN Minli (1999-), female, Master candidate. E-mail: 975216049@qq.com
Supported by:
摘要:
氨分解作为一种很有前景的现场制氢技术, 关键在于开发出廉价、高性能的催化剂。本研究通过共沉淀法合成系列NixMg75-xAl25类水滑石化合物(HTlc)作为前驱体, 经过焙烧和还原处理制备负载型高分散Ni/Mg(Al)O催化剂并用于氨分解制氢, 采用不同研究手段对样品进行了表征, 考察了Ni含量和氨还原对催化性能的影响。结果显示, HTlc前驱体经过焙烧分解形成Mg(Ni, Al)O固溶体, Ni物种与载体之间存在较强的相互作用, 经750 ℃氨还原得到高分散Ni金属纳米颗粒, 其平均晶粒尺寸为5.9~7.7 nm。质谱分析表明, 氨还原过程中无氮氧化物(NOx)生成, 同时750 ℃氨还原与氢还原催化剂的活性相当, 说明氨是一种合适的还原气。催化剂活性随着Ni含量和还原温度升高而增加。其中, 750 ℃氨还原Ni20Mg55Al25催化剂在30000 mL·gcat-1·h-1、600 ℃下的氨转化率为98%, 且在100 h反应过程中转化率保持不变, Ni金属无明显烧结现象, 催化剂表现出良好的活性、稳定性和抗烧结性能。
中图分类号:
连敏丽, 苏佳欣, 黄鸿杨, 嵇玉寅, 邓海帆, 张彤, 陈崇启, 李达林. Ni-Mg-Al类水滑石衍生镍基催化剂的制备及其氨分解性能[J]. 无机材料学报, 2025, 40(1): 53-60.
LIAN Minli, SU Jiaxin, HUANG Hongyang, JI Yuyin, DENG Haifan, ZHANG Tong, CHEN Chongqi, LI Dalin. Supported Ni Catalysts from Ni-Mg-Al Hydrotalcite-like Compounds:Preparation and Catalytic Performance for Ammonia Decomposition[J]. Journal of Inorganic Materials, 2025, 40(1): 53-60.
图1 NixMg75-xAl25 HTlc前驱体的(A)XRD谱图和(B)SEM照片
Fig. 1 (A) XRD patterns and (B) SEM images of the as-synthesized NixMg75-xAl25 HTlc precursors (a) Ni5Mg70Al25-HTlc; (b) Ni10Mg65Al25-HTlc; (c) Ni15Mg60Al25-HTlc; (d) Ni20Mg55Al25-HTlc; (e) Ni25Mg50Al25-HTlc
Sample | Metal content/(%, in atom) | Lattice parameter/nm | |||
---|---|---|---|---|---|
Ni | Mg | Al | a | c | |
Ni5Mg70Al25-HTlc | 5.5 | 68.1 | 26.4 | 0.306 | 2.344 |
Ni10Mg65Al25-HTlc | 10.4 | 63.1 | 26.5 | 0.305 | 2.344 |
Ni15Mg60Al25-HTlc | 15.9 | 58.4 | 25.7 | 0.306 | 2.344 |
Ni20Mg55Al25-HTlc | 20.5 | 53.5 | 26.0 | 0.305 | 2.344 |
Ni25Mg50Al25-HTlc | 25.6 | 48.9 | 25.5 | 0.305 | 2.347 |
表1 NixMg75-xAl25 HTlc前驱体的金属含量和晶格参数
Table 1 Metal contents and lattice parameters of the NixMg75-xAl25 HTlc precursors
Sample | Metal content/(%, in atom) | Lattice parameter/nm | |||
---|---|---|---|---|---|
Ni | Mg | Al | a | c | |
Ni5Mg70Al25-HTlc | 5.5 | 68.1 | 26.4 | 0.306 | 2.344 |
Ni10Mg65Al25-HTlc | 10.4 | 63.1 | 26.5 | 0.305 | 2.344 |
Ni15Mg60Al25-HTlc | 15.9 | 58.4 | 25.7 | 0.306 | 2.344 |
Ni20Mg55Al25-HTlc | 20.5 | 53.5 | 26.0 | 0.305 | 2.344 |
Ni25Mg50Al25-HTlc | 25.6 | 48.9 | 25.5 | 0.305 | 2.347 |
图2 NixMg75-xAl25焙烧样品的(A)XRD谱图和(B)H2-TPR曲线
Fig. 2 (A) XRD patterns and (B) H2-TPR profiles of calcined NixMg75-xAl25 (a) Ni5Mg70Al25; (b) Ni10Mg65Al25; (c) Ni15Mg60Al25; (d) Ni20Mg55Al25; (e) Ni25Mg50Al25
Sample | Surface area/ (m2·gcat-1) | Pore volume/ (cm3·gcat-1) | Pore diameter/ nm | Ni crystal size/ nm | |
---|---|---|---|---|---|
Ni5Mg70Al25 | 197.3 | 0.45 | 7.5 | 7.7 | |
Ni10Mg65Al25 | 173.0 | 0.31 | 5.6 | 7.6 | |
Ni15Mg60Al25 | 217.4 | 0.36 | 5.6 | 5.9 | |
Ni20Mg55Al25 | 218.6 | 0.38 | 5.5 | 5.9 | |
Ni25Mg50Al25 | 204.4 | 0.43 | 7.0 | 6.7 |
表2 焙烧样品的织构性质和还原催化剂中Ni金属晶粒尺寸
Table 2 Textural properties of the calcined samples and crystallite size of Ni metal in the reduced catalysts
Sample | Surface area/ (m2·gcat-1) | Pore volume/ (cm3·gcat-1) | Pore diameter/ nm | Ni crystal size/ nm | |
---|---|---|---|---|---|
Ni5Mg70Al25 | 197.3 | 0.45 | 7.5 | 7.7 | |
Ni10Mg65Al25 | 173.0 | 0.31 | 5.6 | 7.6 | |
Ni15Mg60Al25 | 217.4 | 0.36 | 5.6 | 5.9 | |
Ni20Mg55Al25 | 218.6 | 0.38 | 5.5 | 5.9 | |
Ni25Mg50Al25 | 204.4 | 0.43 | 7.0 | 6.7 |
图4 750 ℃氨还原NixMg75-xAl25催化剂的XRD谱图
Fig. 4 XRD patterns of NixMg75-xAl25 catalysts reduced at 750 ℃ with NH3 (a) Ni5Mg70Al25; (b) Ni10Mg65Al25; (c) Ni15Mg60Al25; (d) Ni20Mg55Al25; (e) Ni25Mg50Al25
图5 750 ℃氨还原Ni20Mg55Al25催化剂的(a)HAADF-STEM照片、(b~f)EDX元素分布图、(g, h)TEM和HRTEM照片、(i)Ni金属粒径分布图
Fig. 5 (a) HAADF-STEM image, (b-f) EDX elemental mappings, (g) TEM image, (h) HRTEM image, and (i) Ni particle size distribution for the Ni20Mg55Al25 catalyst reduced at 750 ℃ with NH3
图6 NixMg75-xAl25催化剂的氨分解活性
Fig. 6 Catalytic ammonia decomposition over the NixMg75-xAl25 catalysts Influence of (A) Ni contents, (B) reduction temperature, and (C) reduction atmosphere
图7 Ni20Mg55Al25催化剂(A)在不同空速下的活性、(B)长期稳定性和(C)反应后XRD谱图
Fig. 7 (A) Catalytic activities at different space velocities and (B) long-term stability of Ni20Mg55Al25 (pre-reduced with NH3 at 750 ℃), and (C) XRD patterns of the fresh and used Ni20Mg55Al25
Catalyst | Feed gas | Space velocity/ (mL·gcat-1·h-1) | Temperature/ ℃ | NH3 conversion/ % | NH3 reaction rate/ (mmol· gcat-1·min-1) | Ref. |
---|---|---|---|---|---|---|
Ni20Mg55Al25 | Pure NH3 | 30000 | 550 | 68.5 | 15.3 | This work |
NiCe0.85Zr0.15O | Pure NH3 | 30000 | 550 | 63 | 14.1 | [ |
Ni/cCeO2(IMP) | Pure NH3 | 30000 | 550 | 51 | 11.4 | [ |
Ni_MgAl(6:1) | Pure NH3 | 30000 | 550 | 48 | 10.7 | [ |
Ni/MCM-41(TIE) | Pure NH3 | 30000 | 550 | 47.6 | 10.6 | [ |
Ni/BaZrO3 | Pure NH3 | 20000 | 550 | 62 | 9.2 | [ |
Ni1.2Ce0.1Al | Pure NH3 | 45000 | 550 | 26 | 8.7 | [ |
Ni/La2O3 | Pure NH3 | 6000 | 550 | 78.9 | 3.5 | [ |
表3 Ni催化剂的氨分解性能
Table 3 Catalytic performance of Ni catalysts for ammonia decomposition
Catalyst | Feed gas | Space velocity/ (mL·gcat-1·h-1) | Temperature/ ℃ | NH3 conversion/ % | NH3 reaction rate/ (mmol· gcat-1·min-1) | Ref. |
---|---|---|---|---|---|---|
Ni20Mg55Al25 | Pure NH3 | 30000 | 550 | 68.5 | 15.3 | This work |
NiCe0.85Zr0.15O | Pure NH3 | 30000 | 550 | 63 | 14.1 | [ |
Ni/cCeO2(IMP) | Pure NH3 | 30000 | 550 | 51 | 11.4 | [ |
Ni_MgAl(6:1) | Pure NH3 | 30000 | 550 | 48 | 10.7 | [ |
Ni/MCM-41(TIE) | Pure NH3 | 30000 | 550 | 47.6 | 10.6 | [ |
Ni/BaZrO3 | Pure NH3 | 20000 | 550 | 62 | 9.2 | [ |
Ni1.2Ce0.1Al | Pure NH3 | 45000 | 550 | 26 | 8.7 | [ |
Ni/La2O3 | Pure NH3 | 6000 | 550 | 78.9 | 3.5 | [ |
[1] | LAN R, IRVINE J T S, TAO S. Ammonia and related chemicals as potential indirect hydrogen storage materials. International Journal of Hydrogen Energy, 2012, 37(2): 1482. |
[2] | SCHUTH F, PALKOVITS R, SCHLOGL R, et al. Ammonia as a possible element in an energy infrastructure: catalysts for ammonia decomposition. Energy & Environmental Science, 2012, 5(4): 6278. |
[3] | WAN Z, TAO Y, SHAO J, et al. Ammonia as an effective hydrogen carrier and a clean fuel for solid oxide fuel cells. Energy Conversion and Management, 2021, 228: 113729. |
[4] | 王晓光, 韦永德, 张建, 等. 高效镍基氨分解催化体系中载体作用的研究. 石油学报(石油加工), 2006, 22(5): 33. |
[5] | MAEDA A, HU Z, KUNIMORI K, et al. Effect of high- temperature reduction on ammonia decomposition over niobia- supported and niobia-promoted rhodium catalysts. Catalysis Letters, 1988, 1(5): 155. |
[6] | JU X, LIU L, YU P, et al. Mesoporous Ru/MgO prepared by a deposition-precipitation method as highly active catalyst for producing COx-free hydrogen from ammonia decomposition. Applied Catalysis B: Environmental, 2017, 211: 167. |
[7] | 倪平, 储伟, 罗仕忠, 等. 钡修饰Ir/SiO2催化剂对氨分解促进作用的研究. 合成化学, 2007, 15(4): 407. |
[8] | PARKER L A, CARTER J H, DUMMER N F, et al. Ammonia decomposition enhancement by Cs-promoted Fe/Al2O3 catalysts. Catalysis Letters, 2020, 150(12): 3369. |
[9] | MALEKI H, BERTOLA V. Co-Ce-Al-O mesoporous catalysts for hydrogen generation via ammonia decomposition. International Journal of Hydrogen Energy, 2024, 51: 267. |
[10] | XU J, YAN H, JIN Z, et al. Facile synthesis of stable MO2N nanobelts with high catalytic activity for ammonia decomposition. Chinese Journal of Chemistry, 2019, 37(4): 364. |
[11] | LI L, WU J, SHAO J, et al. Impacts of SiO2 shell structure of Ni@SiO2 nanocatalysts on their performance for catalytic decomposition of ammonia. Catalysis Letters, 2016, 147(1): 141. |
[12] | SIMONSEN S B, CHAKRABORTY D, CHORKENDORFF I, et al. Alloyed Ni-Fe nanoparticles as catalysts for NH3 decomposition. Applied Catalysis A: General, 2012, 447/448: 22. |
[13] | ZANMAN S F, JOLAOSO L A, PODILA S, et al. Ammonia decomposition over citric acid chelated γ-Mo2N and Ni2Mo3N catalysts. International Journal of Hydrogen Energy, 2018, 43(36): 17252. |
[14] | HE H, JIANG H, YANG F, et al. Bimetallic NixCo10-x/CeO2 as highly active catalysts to enhance mid-temperature ammonia decomposition: kinetics and synergies. International Journal of Hydrogen Energy, 2023, 48(13): 5030. |
[15] | PODILA S, DRISS H, ZAMAN S F, et al. MgFe and Mg-Co-Fe mixed oxides derived from hydrotalcites: highly efficient catalysts for COx free hydrogen production from NH3. International Journal of Hydrogen Energy, 2020, 45(1): 873. |
[16] | PANSARE S S, TORRES W, GOODWIN J G. Ammonia decomposition on tungsten carbide. Catalysis Communications, 2007, 8(4): 649. |
[17] | CHOI J G. Ammonia decomposition over vanadium carbide catalysts. Journal of Catalysis, 1999, 182(1): 104. |
[18] | OTREMBA T, FRENZEL N, LERCH M, et al. Kinetic studies on ammonia decomposition over zirconium oxynitride. Applied Catalysis A: General, 2011, 392(1): 103. |
[19] | LE T A, DO Q C, KIM Y, et al. A review on the recent developments of ruthenium and nickel catalysts for COx-free H2 generation by ammonia decomposition. Korean Journal of Chemical Engineering, 2021, 38(6): 1087. |
[20] | TAKEHIRA K. Recent development of layered double hydroxide- derived catalysts—rehydration, reconstitution, and supporting, aiming at commercial application. Applied Clay Science, 2017, 136: 112. |
[21] | TAKEHIRA K. Autothermal reforming of CH4 over supported Ni catalysts prepared from Mg-Al hydrotalcite-like anionic clay. Journal of Catalysis, 2004, 221(1): 43. |
[22] | SERRANOL A, RODRIGUEZ L, MUNOZ G, et al. Biogas reforming on La-promoted NiMgAl catalysts derived from hydrotalcite-like precursors. Journal of Power Sources, 2011, 196(9): 4404. |
[23] | BETCHAKU M, NAKAGAWA Y, TAMURA M, et al. Combination of hydrotalcite-like-compound-derived Ni-Fe/Mg/Al and ceria- supported Rh catalysts for fuel reforming in exhaust gas recirculation system of gasoline engine. Fuel Processing Technology, 2022, 225: 107061. |
[24] | YU X P, CHU W, WANG N, et al. Hydrogen production by ethanol steam reforming on NiCuMgAl catalysts derived from hydrotalcite-like precursors. Catalysis Letters, 2011, 141(8): 1228. |
[25] | DENG L, LIN H, LIU X, et al. Nickel nanoparticles derived from the direct thermal reduction of Ni-containing Ca-Al layered double hydroxides for hydrogen generation via ammonia decomposition. International Journal of Hydrogen Energy, 2021, 46(77): 38351. |
[26] | SATO K, ABE N, KAWAGOE T, et al. Supported Ni catalysts prepared from hydrotalcite-like compounds for the production of hydrogen by ammonia decomposition. International Journal of Hydrogen Energy, 2017, 42(10): 6610. |
[27] | SU Q, GU L, YAO Y, et al. Layered double hydroxides derived Nix(MgyAlzOn) catalysts: enhanced ammonia decomposition by hydrogen spillover effect. Applied Catalysis B: Environmental, 2017, 201: 451. |
[28] | OLSBYE U, AKPORIAYE D, RYTTER E, et al. On the stability of mixed M2+/M3+ oxides. Applied Catalysis A: General, 2002, 224(1): 39. |
[29] | OKURA K, MIYAZAKI K, MUROYAMA H, et al. Ammonia decomposition over Ni catalysts supported on perovskite-type oxides for the on-site generation of hydrogen. RSC Advances, 2018, 8(56): 32102. |
[30] | MUROYAMA H, SABURI C, MATSUI T, et al. Ammonia decomposition over Ni/La2O3 catalyst for on-site generation of hydrogen. Applied Catalysis A: General, 2012, 443/444: 119. |
[31] | LI X, JI W, ZHAO J, et al.Ammonia decomposition over Ru and Ni catalysts supported on fumed SiO2, MCM-41, and SBA-15. Journal of Catalysis, 2005, 236(2): 181. |
[32] | ZHENG W, ZHANG J, GE Q, et al. Effects of CeO2 addition on Ni/Al2O3 catalysts for the reaction of ammonia decomposition to hydrogen. Applied Catalysis B: Environmental, 2008, 80(1/2): 98. |
[33] | WU K, CAO C F, ZHOU C, et al. Engineering of Ce3+-O-Ni structures enriched with oxygen vacancies via Zr doping for effective generation of hydrogen from ammonia. Chemical Engineering Science, 2021, 245: 116818. |
[34] | LIU H, ZHANG Y, LIU S, et al. Ni-CeO2 nanocomposite with enhanced metal-support interaction for effective ammonia decomposition to hydrogen. Chemical Engineering Journal, 2023, 473: 145371. |
[1] | 安琳, 吴淏, 韩鑫, 李耀刚, 王宏志, 张青红. 非贵金属Co5.47N/N-rGO助催化剂增强TiO2光催化制氢性能[J]. 无机材料学报, 2022, 37(5): 534-540. |
[2] | 王虹力, 王男, 王丽莹, 宋二红, 赵占奎. 功能化石墨烯担载型AuPd纳米催化剂增强甲酸制氢反应[J]. 无机材料学报, 2022, 37(5): 547-553. |
[3] | 马慧, 陶疆辉, 王艳妮, 韩玉, 王亚斌, 丁秀萍. 硅钛杂化介孔球负载金纳米粒子及其催化性能调控[J]. 无机材料学报, 2022, 37(4): 404-412. |
[4] | 邓霁峰, 陈顺鹏, 武晓娟, 郑捷, 李星国. 水解制氢材料研究进展[J]. 无机材料学报, 2021, 36(1): 1-8. |
[5] | 王苹,李心宇,时占领,李海涛. Ag与Ag2O协同增强TiO2光催化制氢性能的研究[J]. 无机材料学报, 2020, 35(7): 781-788. |
[6] | 魏磊, 马麦霞, 卢艳红, 王东升, 张素玲, 赵娣, 马卫攀. 酵母菌模板辅助合成Co3O4空心微球催化NaBH4水解制氢[J]. 无机材料学报, 2018, 33(6): 648-652. |
[7] | 王松灿, 汤枫秋, 王连洲. 光电催化分解水用可见光响应型氧化物光阳极的改性研究进展[J]. 无机材料学报, 2018, 33(2): 173-197. |
[8] | 马雅婷, 李巧玲. TiO2/Co3O4复合纳米颗粒的制备及其光催化制氢性能[J]. 无机材料学报, 2016, 31(8): 841-844. |
[9] | 魏 婕, 李雪冬, 王宏志, 张青红, 李耀刚. NCDs/TiO2复合材料的制备及其在太阳光下催化制氢的应用[J]. 无机材料学报, 2015, 30(9): 925-930. |
[10] | 桑换新, 田 野, 王希涛, 陶 磊. Bi掺杂纳米TiO2光催化甘油水溶液制氢性能研究[J]. 无机材料学报, 2012, 27(12): 1283-1288. |
[11] | 于 波, 张文强, 梁明德, 张 平, 徐景明. PMMA造孔剂对固体氧化物电解池制氢性能的影响[J]. 无机材料学报, 2011, 26(8): 807-812. |
[12] | 张耀君,张 莉. 复合材料CdS/Al-HMS的制备及可见光催化降解污染物制氢活性研究[J]. 无机材料学报, 2008, 23(1): 66-70. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||