无机材料学报 ›› 2024, Vol. 39 ›› Issue (6): 662-670.DOI: 10.15541/jim20230557 CSTR: 32189.14.10.15541/jim20230557
所属专题: 【结构材料】陶瓷基复合材料(202409)
收稿日期:
2023-12-04
修回日期:
2024-01-19
出版日期:
2024-06-20
网络出版日期:
2024-01-22
通讯作者:
傅正义, 教授. E-mail: zyfu@whut.edu.cn;作者简介:
孙海洋(1999-), 男, 硕士研究生. E-mail: sunhaiyang@whut.edu.cn
基金资助:
SUN Haiyang(), JI Wei(
), WANG Weimin, FU Zhengyi(
)
Received:
2023-12-04
Revised:
2024-01-19
Published:
2024-06-20
Online:
2024-01-22
Contact:
FU Zhengyi, professor. E-mail: zyfu@whut.edu.cn;About author:
SUN Haiyang (1999-), male, Master candidate. E-mail: sunhaiyang@whut.edu.cn
Supported by:
摘要:
高性能结构材料部件在航空航天、交通汽车、电子信息、冶金等领域具有重要的应用价值, 得到了广泛研究。增强结构材料部件整体性能的方法主要包括材料本征性能提升和结构复合设计优化, 但提高单一结构材料的本征力学性能的研究已接近极限。本研究旨在提出周期序构结构材料的理念, 并采用一体化烧结制备出整体性能更好的结构复合材料, 从而探索高性能结构复合材料发展的新范式。通过周期序构化的设计, 构建了兼具陶瓷高硬度和金属强韧性的TiB-Ti功能单元, 设计制备了不同周期序构模式的TiB-Ti高性能结构复合材料。在此基础上, 对这些结构进行了力学性能研究, 并通过分析其断裂模式来探究不同序构模式对材料整体性能的影响。结果表明, 周期序构化可以通过改变材料宏观断裂模式和应力分散特性来提高材料的整体性能。这一研究新范式对其他结构复合材料的结构设计和性能突破具有指导和借鉴意义。对周期序构模式的复杂化探索, 对周期序构结构材料的应用场景探索和其他性能测试研究也将是未来需要重点关注的问题。
中图分类号:
孙海洋, 季伟, 王为民, 傅正义. TiB-Ti周期序构复合材料设计、制备及性能研究[J]. 无机材料学报, 2024, 39(6): 662-670.
SUN Haiyang, JI Wei, WANG Weimin, FU Zhengyi. Design, Fabrication and Properties of Periodic Ordered Structural Composites with TiB-Ti Units[J]. Journal of Inorganic Materials, 2024, 39(6): 662-670.
图1 原料的形貌和相组成
Fig. 1 Morphologies and phase compositions of raw materials (a, b) Microstructures of (a) Ti powder and (b) TiB2powder; (c) XRD patterns of Ti and TiB2powders
图4 SPS制备的TiB-Ti复合材料的断口微观形貌
Fig. 4 Fractural microstructures of TiB-Ti composites prepared by SPS (a) TiB fracture surface; (b) Ti fracture surface; (c) Two-phase interface fracture
图5 EPMA测试的TiB-Ti周期序构复合材料ababab截面上元素的分布图
Fig. 5 Distribution of elements on ababab section of TiB-Ti periodic ordered composite tested by EPMA (a) Sample selection photo; (b) Ti element distribution; (c) B element distribution; (d) Backscattered electron (BSE) image
Parameter | TiB | Ti |
---|---|---|
Density/(g·cm-3) | 4.56 | 4.50 |
E/GPa | 370 | 110 |
KIC/(MPa·m1/2) | 6.1 | 29.3 |
Bending strength/MPa | 489.95 | 238.32 |
Compressive strength/MPa | 1035.43 | 1596.26 |
Hardness/GPa | 20.0 | 1.7 |
表1 TiB陶瓷和Ti金属材料的力学参数
Table1 Mechanical properties of TiB ceramic and Ti metal materials
Parameter | TiB | Ti |
---|---|---|
Density/(g·cm-3) | 4.56 | 4.50 |
E/GPa | 370 | 110 |
KIC/(MPa·m1/2) | 6.1 | 29.3 |
Bending strength/MPa | 489.95 | 238.32 |
Compressive strength/MPa | 1035.43 | 1596.26 |
Hardness/GPa | 20.0 | 1.7 |
图7 六种TiB-Ti周期序构复合材料的力学性能
Fig. 7 Mechanical properties of six TiB-Ti periodic ordered composites (a) Bending strength stress-strain curves; (b) Bending strength line chart; (c) Compressive strength stress-strain curves; (d) Compressive strength line chart; Colorful figures are available on website
图8 六种TiB-Ti周期序构复合材料的三点抗弯试样宏观裂纹形貌(a~f)和压缩试样破坏形貌(a'~f')
Fig. 8 Macro-cracked morphologies (a-f) and fracture appearances (a'-f') of six TiB-Ti periodic ordered composite bending samples and compressed samples (a, a') aaabbb; (b, b') aabbab; (c, c') aababb; (d, d') abbaab; (e, e') abaabb; (f, f') ababab
图9 六种TiB-Ti周期序构复合材料的三点抗弯试样宏观断口形貌
Fig. 9 Macro fracture morphologies of six TiB-Ti periodic ordered composite bending samples (a) aaabbb; (b) aabbab; (c) aababb; (d) abbaab; (e) abaabb; (f) ababab
图11 TiB-Ti周期序构复合材料的抗弯微观断口形貌(a, b)和压缩显微断口形貌(c, d)
Fig. 11 Microscopic fracture morphologies of TiB-Ti periodic ordered composite bending samples (a, b) and compressed samples (c, d) (a, c) TiB layer; (b, d) Ti layer
[1] | OYA T, TIESLER N, KAWANISHI S, et al. Experimental and numerical analysis of multilayered steel sheets upon bending. Journal of Materials Processing Technology, 2010, 210(14): 1926. |
[2] | GO Y H, CHO J, JEONG C Y, et al. Stress distribution of bulk metallic glass/metal laminate composites during uni-axial fracture. Materials Science and Engineering A, 2007, 460/461: 377. |
[3] | AGHDAM M M, KAMALIKHAH A. Micromechanical analysis of layered systems of MMCs subjected to bending-effects of thermal residual stresses. Composite Structures, 2004, 66(1-4):563. |
[4] | KUO, D H; KRIVEN, W M. Fracture of multilayer oxide composites. Materials Science and Engineering: A, 1998, 241(1):241. |
[5] | LUO W, YAN S, ZHOU J. Ceramic-based dielectric metamaterials. Interdisciplinary Materials, 2022, 1(1):11. |
[6] | LUO J. Computing grain boundary “phase” diagrams. Interdisciplinary Materials, 2023, 2(1):137. |
[7] | EAST D, GIBSON M A, LIANG D, et al. Production and mechanical properties of roll bonded bulk metallic glass/aluminum laminates. Metallurgical and Materials Transaction A, 2013, 44(5): 2010. |
[8] | CARREÑO F, CHAO J, POZUELO M, et al. Microstructure and fracture properties of an ultrahigh carbon steel-mild steel laminated composite. Scripta Materialia, 2003, 48(8):1135. |
[9] | SYN C K, LESUER D R, SHERBY O D. Enhancing tensile ductility of a particulate-reinforced aluminum metal matrix composite by lamination with Mg-9%Li alloy. Materials Science and Engineering, 1996, 206(2):201. |
[10] | OHASHI Y, WOLFENSTINE J, KOCH J, et al. Fracture behavior of a laminated steel-brass composite in bend tests. Materials Science and Engineering, 1992, 151(1):37. |
[11] | SMITH D J, ZUO Y Q, PARTRIDGE P G, et al. Bend stiffness and strength of laminates composed of titanium alloy and titanium metal matrix composite. Materials Science and Technology, 1997, 13(1):35. |
[12] | LIU B X, HUANG L J, GENG L, et al. Fabrication and superior ductility of laminated Ti-(TiBw/Ti) composites by diffusion welding. Journal of Alloys and Compounds, 2014, 602: 187. |
[13] | LIU B X, HUANG L J, GENG L, et al. Gradient grain distribution and enhanced properties of novel laminated TiTiBw/Ti composites by reaction hot-pressing. Materials Science and Engineering: A, 2014, 595: 257. |
[14] | LIU B X, HUANG LJ, GENG L, et al. Microstructure and tensile behavior of novel laminated Ti-TiBw/Ti composites by reaction hot pressing. Materials Science and Engineering A, 2013, 583: 182. |
[15] | GUPTA N, MUKHOPADHYAY A, PAVANI K, et al. Spark plasma sintering of novel ZrB2-SiC-TiSi2 composites with better mechanical properties. Materials Science and Engineering: A, 2012, 534: 111. |
[16] | MALIK P, KADOLI R. Thermo-elastic response of SUS316-Al2O3 functionally graded beams under various heat loads. International Journal of Mechanical Sciences, 2017, 128: 206. |
[17] | KHOA N D, THIEM H T, DUC N D. Nonlinear buckling and postbuckling of imperfect piezoelectric S-FGM circular cylindrical shells with metal-ceramic-metal layers in thermal environment using Reddy’s third-order shear deformation shell theory. Mechanics of Advanced Materials and Structures, 2019, 26(3):248. |
[18] | FENG H B, JIA D C, ZHOU Y. Spark plasma sintering reaction synthesized TiB reinforced titanium matrix composites. Composites Part A: Applied Science and Manufacturing, 2005, 36(5):558. |
[19] | 神祥博, 张朝晖, 王富耻, 等. 放电等离子烧结法制备 TiB 陶瓷刀具材料的显微结构和力学性能. 模具制造, 2010, 10(12):92. |
[20] | NAMBU S, MICHIUCHI M, INOUE J, et al. Effect of interfacial bonding strengthon tensile ductility of multilayered steel composites. Composites Science and Technology, 2009, 69(11/12): 1936. |
[21] | WADGAONKAR S C, PARAMESWARAN V. Structure of near-tip stress field and variation of stress intensity factor for a crack in a transversely graded material. Journal of Applied Mechanics, 2009, 76(1):011014. |
[22] | KIDANE A, ADDIS A. Quasi-static and dynamic fracture initiation toughness of Ti/TiB layered functionally graded material under thermo-mechanical loading. Engineering Fracture Mechanics, 2010, 77(3):479. |
[23] | LIU B X, HUANG L J, GENG L, et al. Fracture behaviors and micro-structural failure mechanisms of laminated Ti-TiBw/Ti composites. Material Science and Engineering: A, 2014; 611: 290. |
[24] | HAN Y F, DUAN H Q, LU W J, et al. Fabrication and characterization of laminated Ti-(TiB+La2O3)/Ti composite. Progress in Natural Science: Materials International, 2015, 25(5):453. |
[25] | LIU B X, HUANG L J, GENG L. Elastic and plastic behaviors of laminated Ti-TiBw/Ti composites. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2015, 30(3):596. |
[26] | KOSEKI T, INOUE J, NAMBU S. Development of multilayer steels for improved combinations of high strength and high ductility. Materials Transactions, 2014, 55(2):227. |
[27] | STEIF P S. Bimaterial interface instabilities in plastic solids. International Journal of Solids and Structures, 1986, 22(2):195. |
[1] | 全文心, 余艺平, 方冰, 李伟, 王松. 管状C/SiC复合材料高温空气氧化行为与宏细观建模研究[J]. 无机材料学报, 2024, 39(8): 920-928. |
[2] | 何思哲, 王俊舟, 张勇, 费嘉维, 吴爱民, 陈意峰, 李强, 周晟, 黄昊. 高频低损耗的Fe/亚微米FeNi软磁复合材料[J]. 无机材料学报, 2024, 39(8): 871-878. |
[3] | 范武刚, 曹雄, 周响, 李玲, 赵冠楠, 张兆泉. 8YSZ陶瓷在模拟压水堆水环境中的耐腐蚀性能[J]. 无机材料学报, 2024, 39(7): 803-809. |
[4] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[5] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[6] | 刘国昂, 王海龙, 方成, 黄飞龙, 杨欢. B4C含量对(Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C陶瓷力学性能及抗氧化性能的影响[J]. 无机材料学报, 2024, 39(6): 697-706. |
[7] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[8] | 粟毅, 史扬帆, 贾成兰, 迟蓬涛, 高扬, 马青松, 陈思安. 浆料浸渍辅助PIP工艺制备C/HfC-SiC复合材料的微观结构及性能研究[J]. 无机材料学报, 2024, 39(6): 726-732. |
[9] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[10] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[11] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[12] | 李广宇, 岳一凡, 王波, 张程煜, 索涛, 李玉龙. 2D-SiC/SiC复合材料的弹丸冲击损伤及冲击后拉伸性能[J]. 无机材料学报, 2024, 39(5): 494-500. |
[13] | 薛轶凡, 李玮洁, 张中伟, 庞旭, 刘愚. 碳纤维布表面PyC界面相微观结构及均匀性的工艺调控[J]. 无机材料学报, 2024, 39(4): 399-408. |
[14] | 李雷, 程群峰. 高性能MXenes纳米复合材料研究进展[J]. 无机材料学报, 2024, 39(2): 153-161. |
[15] | 刘艳艳, 谢曦, 刘增乾, 张哲峰. MAX相陶瓷增强金属基复合材料: 制备、性能与仿生设计[J]. 无机材料学报, 2024, 39(2): 145-152. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||