无机材料学报 ›› 2024, Vol. 39 ›› Issue (10): 1114-1124.DOI: 10.15541/jim20240152 CSTR: 32189.14.10.15541/jim20240152
张志民1,2(), 葛敏1, 林翰1,2(
), 施剑林1,2(
)
收稿日期:
2024-03-27
修回日期:
2024-04-15
出版日期:
2024-10-20
网络出版日期:
2024-10-09
通讯作者:
林 翰, 副研究员. E-mail: linhan@mail.sic.ac.cn;作者简介:
张志民(1999-), 男, 硕士研究生. E-mail: zhangzhimin21@mails.ucas.ac.cn
基金资助:
ZHANG Zhimin1,2(), GE Min1, LIN Han1,2(
), SHI Jianlin1,2(
)
Received:
2024-03-27
Revised:
2024-04-15
Published:
2024-10-20
Online:
2024-10-09
Contact:
LIN Han, associate professor. E-mail: linhan@mail.sic.ac.cn;About author:
ZHANG Zhimin (1999-), male, Master candidate. E-mail: zhangzhimin21@mails.ucas.ac.cn
Supported by:
摘要:
相比于功能单一且易催生细菌耐药性的抗生素等药物, 具有催化活性的无机纳米功能材料凭借自身对感染微环境(弱酸、高H2O2含量)或外部物理刺激(激光、超声)的高响应性和广谱杀菌等优势, 在致病菌感染的治疗中占据愈发重要的地位。然而, 感染微环境酸性微弱且不稳定, 光、声信号功率密度过高会对人体细胞造成伤害, 而诸如交变磁场等非侵入性、高组织穿透性和易于远程控制的信号类型及其介导的磁电催化在抗菌中的应用尚未见报道。本研究将基于磁致伸缩-压电催化效应的交变磁场响应性纳米催化策略应用于抗菌, 并使用含氮基团L-精氨酸(LA)修饰CoFe2O4-BiFeO3磁电纳米颗粒(BCFO)表面, 以实现磁电响应可控释放强杀菌物种活性氮(RNS)。在交变磁场中, BCFO同时产生羟基自由基(·OH)和超氧阴离子(·O2-)两种活性氧(ROS), 前者与LA反应产生一氧化氮(NO), 后者与NO反应生成RNS物种过氧亚硝酸根(ONOO-)。作为高活性的硝化和氧化剂, ONOO-可在生物友好的交变磁场下展现出比ROS更强的抗菌能力。本研究证实BCFO能产生ONOO-, 并发挥更强的杀菌功效。这一研究不仅将磁电纳米催化医学策略用于抗菌, 还通过ROS向RNS转变显著提升了材料的抗菌性能。
中图分类号:
张志民, 葛敏, 林翰, 施剑林. 新型磁电催化纳米粒子的活性氮释放与抗菌性能研究[J]. 无机材料学报, 2024, 39(10): 1114-1124.
ZHANG Zhimin, GE Min, LIN Han, SHI Jianlin. Novel Magnetoelectric Catalytic Nanoparticles: RNS Release and Antibacterial Efficiency[J]. Journal of Inorganic Materials, 2024, 39(10): 1114-1124.
图1 BCFO-LA产生ONOO-及抗菌机理示意图
Fig. 1 Schematic diagram of the ONOO- generating and antibacterial mechanisms of BCFO-LA BCFO: CoFe2O4-BiFeO3 magnetoelectric nanoparticles; LA: L-arginine
图2 BCFO的形貌、成分与结构表征
Fig. 2 Morphology, component and construction characterizations of BCFO (a-c) TEM (a), HRTEM (b) and bright field (c) images of BCFO; (d) Element mappings of BCFO; (e) Molar percentages of metal elements in BCFO according to ICP-OES; (f) XRD pattern of BCFO; (g-i) Total (g),Fe2p (h) and O1s (i) XPS spectra of BCFO; Colorful figures are available on website
图3 BCFO的性能检测
Fig. 3 Performance evaluation of BCFO (a) Hysteresis loops of CFO and BCFO in AMF (1 emu/g = 104 G/g, 1 Oe = 79.577472 A/m); (b) Piezoresponsive amplitude and phase curves of BCFO; (c) EPR patterns of DMPO solutions with different treatments; (d) UV-Vis absorption spectra of DPBF treated by BCFO under AMF at different time points
图4 BCFO在交变磁场中的理论模拟
Fig. 4 Theoretical simulation of BCFO in AMF (a-e) COMSOL simulations of magnetization (a), von Mises stress (b), volumetric strain (c), displacement (d), and electric potential (e) produced by BCFO in AMF; (f-h) Relationships between AMF and volumetric strain (f), AMF and displacement (g) as well as volumetric strain and electric potential (h) in BCFO derived from COMSOL
图5 BCFO-LA的制备表征与ONOO-产生性能
Fig. 5 Preparation, characterization and ONOO--generation property of BCFO-LA (a) Preparing processes of PLGA-TK-LA (EDCl: 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride; NHS: N-Hydroxysuccinimide; DMF: N,N-Dimethylformamide; DCC: N,N'-Dicylohexylcarbodiimide; DMAP: 4-Dimethylaminopyridine); (b) 1H NMR spectrum of PLGA-TK-LA; (c) Schematic diagram of BCFO-LA preparation (BCFO: CoFe2O4-BiFeO3, cobalt ferrite-bismuth ferrite); (d) TEM image of BCFO-LA with negative staining, where the shaded area circled by dotted line refers to PLGA-TK-LA; (e) Hydraulic diameter distributions of BCFO-LA; (f) Fluorescence emission spectra of L-tyrosine probe after co-incubated with BCFO-LA at different time points under AMF (B = 1.7 mT, λex = 265 nm)
图6 BCFO-LA的抗菌性能
Fig. 6 Antibacterial performance of BCFO-LA (a, b) Plate-spreading photos (a) and survival rates (b) of S. aureus treated by BCFO; (c, d) Plate-spreading photos (c) and survival rates (d) of S. aureus treated by BCFO-LA; (e, f) Flow cytometry results of DCFH-DA stained S. aureus (e) and relative DCF fluorescence intensities (f)
图S1 CFO的形貌和物相表征
Fig. S1 Morphology and phase characterizations of CFO (a, b) TEM image (a) and XRD pattern (b) of CFO; (c, d) TEM image (c) and XRD pattern (d) of CFO coated with BFO precursor
[1] | ROOKS M G, GARRETT W S. Gut microbiota, metabolites and host immunity. Nature Reviews Immunology, 2016, 16(6): 341. |
[2] | STOKES J M, LOPATKIN A J, LOBRITZ M A, et al. Bacterial metabolism and antibiotic efficacy. Cell Metabolism, 2019, 30(2): 251. |
[3] | BLUMENTHAL K G, PETER J G, TRUBIANO J A, et al. Antibiotic allergy. Lancet, 2019, 393(10167): 183. |
[4] | ROOPE L S J, SMITH R D, POUWELS K B, et al. The challenge of antimicrobial resistance: what economics can contribute. Science, 2019, 364(6435): 41. |
[5] | MESTROVIC T, AGUILAR G R, SWETSCHINSKI L R, et al. The burden of bacterial antimicrobial resistance in the WHO European region in 2019: a cross-country systematic analysis. Lancet Public Health, 2022, 7(11): E897. |
[6] | SHARMA A, RODRIGUEZ-MORALES A J, TRAORE T, et al. Globalisation of antibiotic-resistant bacteria at recurring mass gathering events. Lancet, 2023, 402(10398): e5. |
[7] | LEHNER R, WANG X Y, MARSCH S, et al. Intelligent nanomaterials for medicine: carrier platforms and targeting strategies in the context of clinical application. Nanomedicine-Nanotechnology Biology and Medicine, 2013, 9(6): 742. |
[8] | GENG Z, CAO Z, LIU J. Recent advances in targeted antibacterial therapy basing on nanomaterials. Exploration, 2023, 3(1): 20210117. |
[9] | HUANG F, CAI X, HOU X, et al. A dynamic covalent polymeric antimicrobial for conquering drug-resistant bacterial infection. Exploration, 2022, 2(5): 20210145. |
[10] | XIANG H, CHEN Y. Energy-converting nanomedicine. Small, 2019, 15(13): 1805339. |
[11] |
YANG C, LUO Y, SHEN H, et al. Inorganic nanosheets facilitate humoral immunity against medical implant infections by modulating immune co-stimulatory pathways. Nature Communications, 2022, 13: 4866.
DOI PMID |
[12] | YANG B, CHEN Y, SHI J. Nanocatalytic medicine. Advanced Materials, 2019, 31(39): 1901778. |
[13] | LIN H, CHEN Y, SHI J. Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy. Chemical Society Reviews, 2018, 47(6): 1938. |
[14] | PENG H, YAO F, ZHAO J, et al. Unraveling mitochondria-targeting reactive oxygen species modulation and their implementations in cancer therapy by nanomaterials. Exploration, 2023, 3(2): 20220115. |
[15] | JANA D, ZHAO Y. Strategies for enhancing cancer chemodynamic therapy performance. Exploration, 2022, 2(2): 20210238. |
[16] | FANG F C. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nature Reviews Microbiology, 2004, 2(10): 820. |
[17] |
YANG J, QI W, WANG L, et al. Near-infrared-guided NO generator for combined NO/photothermal/chemodynamic therapy of bacterial infections. Acta biomaterialia, 2024, 176: 379.
DOI PMID |
[18] | ZHAO S, XIA Y, LAN Q, et al. pH-responsive nanogel for photothemal-enhanced chemodynamic antibacterial therapy. ACS Applied Nano Materials, 2023, 6(10): 8643. |
[19] | GUO G, ZHANG H, SHEN H, et al. Space-selective chemodynamic therapy of CuFe5O8 nanocubes for implant-related infections. ACS Nano, 2020, 14(10): 13391. |
[20] | ZHANG Y, PI Y, HUA Y, et al. Bacteria responsive polyoxometalates nanocluster strategy to regulate biofilm microenvironments for enhanced synergetic antibiofilm activity and wound healing. Theranostics, 2020, 10(22): 10031. |
[21] | ZHANG D, ZHAO Y X, GAO Y J, et al. Anti-bacterial and in vivo tumor treatment by reactive oxygen species generated by magnetic nanoparticles. Journal of Materials Chemistry B, 2013, 1(38): 5100. |
[22] | RANJI-BURACHALOO H, GURR P A, DUNSTAN D E, et al. Cancer treatment through nanoparticle-facilitated Fenton reaction. ACS Nano, 2018, 12(12): 11819. |
[23] | HU T T, YAN L, WANG Z D, et al. A pH-responsive ultrathin Cu-based nanoplatform for specific photothermal and chemodynamic synergistic therapy. Chemical Science, 2021, 12(7): 2594. |
[24] | ZHANG J, ZHUANG J, GAO L, et al. Decomposing phenol by the hidden talent of ferromagnetic nanoparticles. Chemosphere, 2008, 73(9): 1524. |
[25] | LUCKY S S, SOO K C, ZHANG Y. Nanoparticles in photodynamic therapy. Chemical Reviews, 2015, 115(4): 1990. |
[26] | KUO W S, CHEN H H, CHEN S Y, et al. Graphene quantum dots with nitrogen-doped content dependence for highly efficient dual-modality photodynamic antimicrobial therapy and bioimaging. Biomaterials, 2017, 120: 185. |
[27] | MAHMOUDI H, BAHADOR A, POURHAJIBAGHER M, et al. Antimicrobial photodynamic therapy: an effective alternative approach to control bacterial infections. Journal of Lasers in Medical Sciences, 2018, 9(3): 154. |
[28] |
SERPE L, GIUNTINI F. Sonodynamic antimicrobial chemotherapy: first steps towards a sound approach for microbe inactivation. Journal of Photochemistry and Photobiology B-Biology, 2015, 150: 44.
DOI PMID |
[29] | PANG X, LIU X, CHENG Y, et al. Sono-immunotherapeutic nanocapturer to combat multidrug-resistant bacterial infections. Advanced Materials, 2019, 31(35): 1902530. |
[30] | NIE Y, ZHANG W, XIAO W, et al. Novel biodegradable two- dimensional vanadene augmented photoelectro-fenton process for cancer catalytic therapy. Biomaterials, 2022, 289: 121791. |
[31] | GE M, XU D, CHEN Z, et al. Magnetostrictive-piezoelectric-triggered nanocatalytic tumor therapy. Nano Letters, 2021, 21(16): 6764. |
[32] | HUANG H, DELIKANLI S, ZENG H, et al. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nature Nanotechnology, 2010, 5(8): 602. |
[33] | LEE J U, SHIN W, LIM Y, et al. Non-contact long-range magnetic stimulation of mechanosensitive ion channels in freely moving animals. Nature Materials, 2021, 20(7): 1029. |
[34] | JANG J, PARK C B. Magnetoelectric dissociation of Alzheimer's β-amyloid aggregates. Science Advances, 2022, 8(19): eabn1675. |
[35] | MUSHTAQ F, CHEN X, TORLAKCIK H, et al. Magnetoelectrically driven catalytic degradation of organics. Advanced Materials, 2019, 31(28): 1901378. |
[36] | ZHANG Z, YOU Y, GE M, et al. Functional nanoparticle-enabled non-genetic neuromodulation. Journal of Nanobiotechnology, 2023, 21(1): 319. |
[37] | ZHU P, CHEN Y, SHI J. Piezocatalytic tumor therapy by ultrasound-triggered and BaTiO3-mediated piezoelectricity. Advanced Materials, 2020, 32(29): 2001976. |
[38] | KOZIELSKI K L, JAHANSHAHI A, GILBERT H B, et al. Nonresonant powering of injectable nanoelectrodes enables wireless deep brain stimulation in freely moving mice. Science Advances, 2021, 7(3): eabc4189. |
[39] | WANG P, ZHANG E, TOLEDO D, et al. Colossal magnetoelectric effect in core-shell magnetoelectric nanoparticles. Nano Letters, 2020, 20(8): 5765. |
[40] | ARIFIADI A N, KIM K T, KHAIRANI I Y, et al. Synthesis and multiferroic properties of high-purity CoFe2O4-BiFeO3 nanocomposites. Journal of Alloys and Compounds, 2021, 867: 159008. |
[41] | KUILA S, TIWARY S, SAHOO M R, et al. Study of magnetization and magnetoelectricity in CoFe2O4/BiFeO3 core-shell composites. Journal of Applied Physics, 2018, 123(6): 064101. |
[42] | ZHANG K, XU H, JIA X, et al. Ultrasound-triggered nitric oxide release platform based on energy transformation for targeted inhibition of pancreatic tumor. ACS Nano, 2016, 10(12): 10816. |
[43] |
PEI P, SUN C, TAO W, et al. ROS-sensitive thioketal-linked polyphosphoester-doxorubicin conjugate for precise phototriggered locoregional chemotherapy. Biomaterials, 2019, 188: 74.
DOI PMID |
[44] | LI Y, LIU X, LI B, et al. Near-infrared light triggered phototherapy and immunotherapy for elimination of methicillin-resistant Staphylococcus aureus biofilm infection on bone implant. ACS Nano, 2020, 14(7): 8157. |
[45] | GEHRING J, TREPKA B, KLINKENBERG N, et al. Sunlight- triggered nanoparticle synergy: teamwork of reactive oxygen species and nitric oxide released from mesoporous organosilica with advanced antibacterial activity. Journal of the American Chemical Society, 2016, 138(9): 3076. |
[46] | DU Z, ZHANG X, GUO Z, et al. X-ray-controlled generation of peroxynitrite based on nanosized LiLuF4:Ce3+ scintillators and their applications for radiosensitization. Advanced Materials, 2018, 30(43): 1804046. |
[47] | WANG Z, ZHAN M, LI W, et al. Photoacoustic cavitation-ignited reactive oxygen species to amplify peroxynitrite burst by photosensitization-free polymeric nanocapsules. Angewandte Chemie International Edition, 2021, 60(9): 4720. |
[48] | FRIDOVICH I. Superoxide anion radical (·O2- radical anion), superoxide dismutases, and related matters. Journal of Biological Chemistry, 1997, 272(30): 18515. |
[49] | BECKMAN J S. Peroxynitrite versus hydroxyl radical:the role of nitric oxide in superoxide-dependent cerebral injury. Annals of the New York Academy of Sciences, 1994, 738(1): 69. |
[50] | BECKMAN J S, BECKMAN T W, CHEN J, et al. Apparent hydroxyl radical production by peroxynitrite-implications for endothelial injury from nitric-oxide and superoxide. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(4): 1620. |
[51] |
KIM Y S, PARK J S, PARK M, et al. PLGA nanoparticles with multiple modes are a biologically safe nanocarrier for mammalian development and their offspring. Biomaterials, 2018, 183: 43.
DOI PMID |
[52] | LIU Q, CHEN X, JIA J, et al. pH-responsive poly(D,L-lactic-co- glycolic acid) nanoparticles with rapid antigen release behavior promote immune response. ACS Nano, 2015, 9(5): 4925. |
[53] | PAN Z, DING J. Poly(lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine. Interface Focus, 2012, 2(3): 366. |
[54] | KUMAR A, SCOTT J F, MARTINEZ R, et al. In-plane dielectric and magnetoelectric studies of BiFeO3. Physica Status Solidi A-Applications and Materials Science, 2012, 209(7): 1207. |
[55] | MOHAIDEEN K K, JOY P A. High magnetostriction parameters for low-temperature sintered cobalt ferrite obtained by two-stage sintering. Journal of Magnetism and Magnetic Materials, 2014, 371: 121. |
[56] | BETAL S, SHRESTHA B, DUTTA M, et al. Magneto-elasto- electroporation (MEEP): in-vitro visualization and numerical characteristics. Scientific Reports, 2016, 6: 32019. |
[57] | AIMON N M, LIAO J, ROSS C A. Simulation of inhomogeneous magnetoelastic anisotropy in ferroelectric/ferromagnetic nanocomposites. Applied Physics Letters, 2012, 101(23): 232901. |
[58] | YU H, JIN F, LIU D, et al. ROS-responsive nano-drug delivery system combining mitochondria-targeting ceria nanoparticles with atorvastatin for acute kidney injury. Theranostics, 2020, 10(5): 2342. |
[59] | ZHANG X, JIANG D W, YANG G L, et al. A single-wavelength NIR-triggered polymer for in situ generation of Peroxynitrite (ONOO-) to enhance phototherapeutic efficacy. Chinese Journal of Polymer Science, 2021, 39(6): 692. |
[60] | WANG D, NIU L, QIAO Z Y, et al. Synthesis of self-assembled porphyrin nanoparticle photosensitizers. ACS Nano, 2018, 12(4): 3796. |
[1] | 李承瑜, 丁自友, 韩颖超. 锰掺杂纳米羟基磷灰石的体外抗菌-促成骨性能研究[J]. 无机材料学报, 2024, 39(3): 313-320. |
[2] | 张淑敏, 奚晓雯, 孙磊, 孙平, 王德强, 魏杰. 基于声动力和类酶活性的铌基涂层: 抗菌及促进细胞增殖与分化[J]. 无机材料学报, 2024, 39(10): 1125-1134. |
[3] | 谢家晔, 李力文, 朱强. 三种临床盖髓剂的抗菌性及生物相容性对比研究[J]. 无机材料学报, 2023, 38(12): 1449-1456. |
[4] | 杜佳恒, 范鑫丽, 肖东琴, 尹一然, 李忠, 贺葵, 段可. 电泳沉积制备微弧氧化钛表面氧化镁涂层及其生物学性能[J]. 无机材料学报, 2023, 38(12): 1441-1448. |
[5] | 吴雪彤, 张若飞, 阎锡蕴, 范克龙. 纳米酶: 一种抗微生物感染新方法[J]. 无机材料学报, 2023, 38(1): 43-54. |
[6] | 盛丽丽, 常江. 光/磁热Fe2SiO4/Fe3O4双相生物陶瓷及其复合电纺丝膜制备及抗菌性能研究[J]. 无机材料学报, 2022, 37(9): 983-990. |
[7] | 王恩典, 常江. 钼掺杂铜硅钙石的制备及其抗菌性能和细胞相容性研究[J]. 无机材料学报, 2021, 36(7): 738-744. |
[8] | 傅佳骏, 沈涛, 吴佳, 王成. 纳米酶: 对抗细菌的新策略[J]. 无机材料学报, 2021, 36(3): 257-268. |
[9] | 郭小炜, 李玉妍, 陈南春, 王秀丽, 解庆林. 负载二甲酸钾缓释抗菌微球的构建[J]. 无机材料学报, 2021, 36(2): 181-187. |
[10] | 李昆强,乔玉琴,刘宣勇. 钛表面铜离子注入对细菌和细胞行为的影响[J]. 无机材料学报, 2020, 35(2): 158-164. |
[11] | 刘姿铔, 曹如雅, 张曼莹. 介孔石墨相氮化碳载银聚醚砜膜制备及性能研究[J]. 无机材料学报, 2019, 34(5): 478-486. |
[12] | 陈一凡, 唐晓宁, 张彬, 罗勇, 李阳. TiO2@SiO2复合材料的制备及其光催化与抗菌性能的研究[J]. 无机材料学报, 2019, 34(12): 1325-1333. |
[13] | 刘玉玲, 王瑞莉, 李楠, 刘梅, 张青红. ZnO介晶填料的制备及其齿科复合树脂的性能[J]. 无机材料学报, 2019, 34(10): 1077-1084. |
[14] | 王东微, 董英豪, 周 杰, 段 可, 鲁 雄, 汪建新, 冯 波, 屈树新, 翁 杰. 低温制备不锈钢表面含铜磷酸铝涂层及抗菌性能研究[J]. 无机材料学报, 2017, 32(4): 431-436. |
[15] | 付海丽, 张 雯, 张 华, 宋少波, 李 伟. 壳聚糖/有机锂皂石纳米复合材料的制备及抗菌性能研究[J]. 无机材料学报, 2016, 31(5): 479-484. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||