无机材料学报 ›› 2023, Vol. 38 ›› Issue (12): 1379-1386.DOI: 10.15541/jim20230224 CSTR: 32189.14.10.15541/jim20230224
所属专题: 【能源环境】CO2绿色转换(202312)
凌洁1,2(), 周安宁1(
), 王文珍3(
), 贾忻宇1, 马梦丹1
收稿日期:
2023-05-10
修回日期:
2023-07-18
出版日期:
2023-08-21
网络出版日期:
2023-08-21
通讯作者:
周安宁, 教授. E-mail: psu564@139.com;作者简介:
凌洁(1984-), 女, 博士研究生. E-mail: 18629375447@163.com
基金资助:
LING Jie1,2(), ZHOU Anning1(
), WANG Wenzhen3(
), JIA Xinyu1, MA Mengdan1
Received:
2023-05-10
Revised:
2023-07-18
Published:
2023-08-21
Online:
2023-08-21
Contact:
ZHOU Anning, professor. E-mail: psu564@139.com;About author:
LING Jie (1984-), female, PhD candidate. E-mail: 18629375447@163.com
Supported by:
摘要:
Cu/Mg-MOF-74具有比表面积高、微孔结构和碱金属活性位点可调、CO2吸附性能及光催化活性优良等优点, 但其Cu与Mg物质的量比(简称: Cu/Mg比)对烟气中CO2吸附选择性影响机制尚不清晰。本研究采用溶剂热法合成了不同Cu/Mg比的Cu/Mg-MOF-74, 表征了其CO2光催化性能、CO2和N2吸附量及孔结构, 计算了Cu/Mg-MOF-74的CO2吸附选择性, 并分析了Cu/Mg比对吸附量、选择性影响机制。结果表明:随着Cu/Mg比减小, Cu/Mg-MOF-74光催化CO2还原为CO和H2的活性先增后减, 当Cu/Mg比为0.6/0.4时, 其光催化还原CO和H2产率最大, 分别为10.65和5.41 μmol·h−1·gcat−1(1 MPa, 150 ℃); 随着Cu/Mg比减小, CO2、N2在Cu/Mg-MOF-74上的吸附量增加, 且CO2吸附量增加显著, 当Cu/Mg比为0.1/0.9时, 其CO2、N2吸附量最大, 分别为9.21、1.49 mmol·g−1(273.15 K, 100 kPa); 随着Cu/Mg比减小, Cu/Mg-MOF-74的微孔(d1≥0.7 nm)、超微孔(d2<0.7 nm)的面积、体积均增加, 当Cu/Mg比为0.22/0.78时, 其微孔、超微孔的面积、体积均大于Mg-MOF-74; 其选择性随Cu/Mg比减小和CO2浓度增大而改善。CO2在Cu/Mg-MOF-74上的吸附作用包括微孔填充和Mg2+化学吸附, 微孔体积是影响其吸附性能的关键。调整Cu/Mg比可调控Cu/Mg-MOF-74的孔结构、CO2吸附量和选择性。
中图分类号:
凌洁, 周安宁, 王文珍, 贾忻宇, 马梦丹. Cu/Mg比对Cu/Mg-MOF-74的CO2吸附性能的影响[J]. 无机材料学报, 2023, 38(12): 1379-1386.
LING Jie, ZHOU Anning, WANG Wenzhen, JIA Xinyu, MA Mengdan. Effect of Cu/Mg Ratio on CO2 Adsorption Performance of Cu/Mg-MOF-74[J]. Journal of Inorganic Materials, 2023, 38(12): 1379-1386.
Product | Yield/(μmol·h−1·gcat−1) | ||||||
---|---|---|---|---|---|---|---|
1/0 | 0.83/0.17 | 0.8/0.2 | 0.6/0.4 | 0.22/0.78 | 0.1/0.9 | 0/1 | |
CO | 3.60 | 6.6 | 10.07 | 10.65 | 8.45 | 5.65 | - |
H2 | 1.68 | 1.895 | 2.04 | 5.41 | 5.07 | 4.36 | - |
表1 Cu/Mg-MOF-74的光催化性能
Table 1 Photocatalytic properties of Cu/Mg-MOF-74
Product | Yield/(μmol·h−1·gcat−1) | ||||||
---|---|---|---|---|---|---|---|
1/0 | 0.83/0.17 | 0.8/0.2 | 0.6/0.4 | 0.22/0.78 | 0.1/0.9 | 0/1 | |
CO | 3.60 | 6.6 | 10.07 | 10.65 | 8.45 | 5.65 | - |
H2 | 1.68 | 1.895 | 2.04 | 5.41 | 5.07 | 4.36 | - |
图2 100 kPa条件下, Cu/Mg-MOF-74的CO2、N2吸附等温线
Fig. 2 Adsorption isotherms of CO2 and N2 of Cu/Mg-MOF-74 at 100 kPa (a) CO2 at 273.15 K; (b) CO2 at 288.15 K; (c) CO2 at 303.15 K; (d) N2 at 273.15 K; (e) N2 at 288.15 K; (f) N2 at 303.15 K
Parameter | 1/0 | 0.83/0.17 | 0.8/0.2 | 0.6/0.4 | 0.22/0.78 | 0.1/0.9 | 0/1 | |
---|---|---|---|---|---|---|---|---|
N2 adsorption | VTotal /(cm3·g-1)a | 0.336 | 0.332 | 0.360 | 0.428 | 0.492 | 0.556 | 0.456 |
VMic /(cm3·g-1)a | 0.265 | 0.257 | 0.304 | 0.362 | 0.438 | 0.520 | 0.435 | |
STotal /(m2·g-1)a | 1035 | 1013 | 1235 | 1562 | 1917 | 2395 | 1611 | |
SMic /(m2·g-1)a | 1020 | 996 | 1223 | 1533 | 1889 | 2371 | 1590 | |
d1 / nmb | 0.774 | 0.769 | 0.760 | 0.767 | 0.763 | 0.763 | 0.751 | |
CO2 adsorption | UVMic /(cm3·g-1)c | 0.143 | 0.027 | 0.0735 | 0.181 | 0.246 | 0.322 | 0.129 |
USMic /(m2·g-1)c | 796.2 | 151.9 | 422.0 | 1003 | 1376 | 1800 | 714.7 | |
d2 /nmb | 0.612 | 0.699 | 0.681 | 0.612 | 0.555 | 0.539 | 0.578 |
表2 不同Cu/Mg比Cu/Mg-MOF-74的孔结构
Table 2 Pore structure of Cu/Mg-MOF-74 according to different Cu/Mg ratios
Parameter | 1/0 | 0.83/0.17 | 0.8/0.2 | 0.6/0.4 | 0.22/0.78 | 0.1/0.9 | 0/1 | |
---|---|---|---|---|---|---|---|---|
N2 adsorption | VTotal /(cm3·g-1)a | 0.336 | 0.332 | 0.360 | 0.428 | 0.492 | 0.556 | 0.456 |
VMic /(cm3·g-1)a | 0.265 | 0.257 | 0.304 | 0.362 | 0.438 | 0.520 | 0.435 | |
STotal /(m2·g-1)a | 1035 | 1013 | 1235 | 1562 | 1917 | 2395 | 1611 | |
SMic /(m2·g-1)a | 1020 | 996 | 1223 | 1533 | 1889 | 2371 | 1590 | |
d1 / nmb | 0.774 | 0.769 | 0.760 | 0.767 | 0.763 | 0.763 | 0.751 | |
CO2 adsorption | UVMic /(cm3·g-1)c | 0.143 | 0.027 | 0.0735 | 0.181 | 0.246 | 0.322 | 0.129 |
USMic /(m2·g-1)c | 796.2 | 151.9 | 422.0 | 1003 | 1376 | 1800 | 714.7 | |
d2 /nmb | 0.612 | 0.699 | 0.681 | 0.612 | 0.555 | 0.539 | 0.578 |
图3 Cu/Mg比对模拟烟气中Cu/Mg-MOF-74的吸附选择性(S)的影响(303.15 K)
Fig. 3 Effect of Cu/Mg ratio on adsorption selectivity of Cu/Mg-MOF-74 in simulated flue gas at 303.15 K
图4 Cu/Mg-MOF-74的孔结构与CO2、N2吸附量关系
Fig. 4 Relationship between pore structure and CO2, N2 uptake of Cu/Mg-MOF-74 (a) VTotal and CO2; (b) VMic and CO2; (c) STotal and CO2; (d) SMic and CO2; (e) VTotal and N2; (f) VMic and N2; (g) STotal and N2; (h) SMic and N2
Parameter | 1/0 | 0.83/0.17 | 0.8/0.2 | 0.6/0.4 | 0.22/0.78 | 0.1/0.9 | 0/1 | |
---|---|---|---|---|---|---|---|---|
CO2 | Qsat /(mmol·g−1) | 11.11 | 19.03 | 23.33 | 44.74 | 7.44 | 10.65 | 9.49 |
b | 1.75×10−3 | 2.50×10−3 | 7.31×10−3 | 1.55×10−2 | 1.62×10−1 | 1.83×10−1 | 1.99×10−1 | |
c | 0.959 | 0.837 | 0.621 | 0.391 | 0.498 | 0.486 | 0.522 | |
R2 | 0.9999 | 0.9999 | 0.9991 | 0.9978 | 0.9952 | 0.9936 | 0.9939 | |
N2 | Qsat /(mmol·g−1) | 0.47 | 0.36 | 0.57 | 1.06 | 1.83 | 2.65 | 0.90 |
b | 2.17×10−3 | 3.09×10−3 | 2.70×10−3 | 2.90×10−3 | 2.08×10−3 | 2.24×10−3 | 3.25×10−3 | |
c | 1.16 | 1.24 | 1.52 | 1.08 | 1.075 | 1.06 | 1.17 | |
R2 | 0.9999 | 0.9997 | 0.9998 | 0.9999 | 0.9999 | 0.9999 | 0.9998 |
表S1 CO2和N2在Cu/Mg-MOF-74上吸附的Langmuir-Freundlich模型拟合参数(303.15 K)
Table S1 Langmuir-Freundlich parameters of CO2 and N2 uptake on Cu/Mg-MOF-74 at 303.15 K and different Cu/Mg ratios
Parameter | 1/0 | 0.83/0.17 | 0.8/0.2 | 0.6/0.4 | 0.22/0.78 | 0.1/0.9 | 0/1 | |
---|---|---|---|---|---|---|---|---|
CO2 | Qsat /(mmol·g−1) | 11.11 | 19.03 | 23.33 | 44.74 | 7.44 | 10.65 | 9.49 |
b | 1.75×10−3 | 2.50×10−3 | 7.31×10−3 | 1.55×10−2 | 1.62×10−1 | 1.83×10−1 | 1.99×10−1 | |
c | 0.959 | 0.837 | 0.621 | 0.391 | 0.498 | 0.486 | 0.522 | |
R2 | 0.9999 | 0.9999 | 0.9991 | 0.9978 | 0.9952 | 0.9936 | 0.9939 | |
N2 | Qsat /(mmol·g−1) | 0.47 | 0.36 | 0.57 | 1.06 | 1.83 | 2.65 | 0.90 |
b | 2.17×10−3 | 3.09×10−3 | 2.70×10−3 | 2.90×10−3 | 2.08×10−3 | 2.24×10−3 | 3.25×10−3 | |
c | 1.16 | 1.24 | 1.52 | 1.08 | 1.075 | 1.06 | 1.17 | |
R2 | 0.9999 | 0.9997 | 0.9998 | 0.9999 | 0.9999 | 0.9999 | 0.9998 |
[1] | WANG Y, CHEN E Q, TANG J W, et al. Insight on reaction pathways of photocatalytic CO2 conversion. ACS Catalysis. 2022, 12: 7300. |
[2] |
OUYANG S X, WANG W Z. Green conversion of CO2. Journal of Inorganic Materials, 2022, 37(1): 1.
DOI URL |
[3] | LI G P, LI Z Z, XIE H F, et al. Efficient C2 hydrocarbons and CO2adsorption and separation in a multi-site functionalized MOF. Chinese Journal of Structure Chemistry, 2021, 40(8): 1047. |
[4] |
LIU Y X, WANG M, SHEN M, et al. Bi-doped ceria with increased oxygen vacancy for enhanced CO2photoreduction performance. Journal of Inorganic Materials, 2021, 36(1): 88.
DOI URL |
[5] |
LIU P, WU S M, WU Y F, et al. Synthesis of Zn0.4(CuGa)0.3Ga2S4/CdS Photocatalyst for CO2 reduction. Journal of Inorganic Materials, 2022, 37(1): 15.
DOI URL |
[6] |
WANG X, ZHU Z J, WU ZY, et al. Preparation and photothermal catalytic application of powder-form cobalt plasmonic superstructures. Journal of Inorganic Materials, 2022, 37(1): 22.
DOI |
[7] | LIN M X, JIANG W S, ZHANG T S, et al. Ordered CoIII- MOF@CoII-MOF heterojunction for highly efficient photocatalytic syngas production. Small Science, 2023, 3: 202200085. |
[8] | SUMIDA K, ROGOW D L, MASON J A., et al. Carbon dioxide capture in metal organic frameworks. Chemical Reviews, 2012, 112: 724. |
[9] |
BRITT D, FURUKAWA H, WANG B, et al. Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. Proceedings of the National Academy of Sciences, 2009, 106(49): 20637.
DOI URL |
[10] | ZHANG Z J, Yao Z Z, XIANG S C, et al. Perspective of microporous metal-organic frameworks for CO2 capture and separation. Energy & Environmental Science, 2014, 7(9): 2868. |
[11] | ZHAI Q G, BU X H, MAO C Y, et al. Systematic and dramatic tuning on gas sorption performance in heterometallic metal-organic frameworks. Journal of the American Chemical Society, 2016, 138(8): 2524. |
[12] |
LIN R B, XIANG S C, XING H B, et al. Exploration of porous metal-organic frameworks for gas separation and purification. Coordination Chemistry Reviews, 2019, 378(1): 87.
DOI URL |
[13] | GAO Z Y, LIANG L, ZHANG X, et al. Facile one-pot synthesis of Zn/Mg-MOF-74 with unsaturated coordination metal centers for efficient CO2 adsorption and conversion to cyclic carbonates. ACS Applied Materials & Interfaces, 2021, 13: 61334. |
[14] | MASOOMI M Y, MORSALI A, DHAKSHINAMOORTHY A, et al. Mixed-Metal MOFs: unique opportunities in metal-organic framework functionality and design. Angewandte Chemie International Edition, 2019, 58: 15188. |
[15] | GUO S H, QI X J, ZHOU H M, et al. A bimetallic-MOF catalyst for efficient CO2 photoreduction from simulated flue gas to value added formate. ACS Applied Materials & Interfaces, 2020, 8: 11712. |
[16] |
HAN B, QU X W, DENG Z Q, et al. Ni metal-organic frameworks monolayers for photoreduction of diluted CO2: metal nodes- dependent activity and selectivity. Angewandte Chemie International Edition, 2018, 57(51): 16811.
DOI URL |
[17] |
KAJIWARA T, FUJII M, TSUJIMOTO M, et al. Photochemical reduction of low concentrations of CO2 in a porous coordination polymer with a ruthenium (II)-CO complex. Angewandte Chemie International Edition, 2016, 55(8): 2697.
DOI URL |
[18] |
LING J, ZHOU A N, WANG W Z, et al. One-pot method synthesis of bimetallic Mg/Cu-MOF-74 and its CO2 adsorption under visible light. ACS Omega, 2022, 7(23): 19920.
DOI URL |
[19] | ZHOU Z H, MEI L, MA C, et al. A novel bimetallic MIL- 101(Cr,Mg) with high CO2 adsorption capacity and CO2/N2 selectivity. Chemical Engineering Science, 2016, 147: 109. |
[20] | QIN L, LI Y, LIANG F L, et al. A microporous 2D cobalt-based MOF with pyridyl sites and open metal sites for selective adsorption of CO2. Microporous & Mesoporous Materials, 2022, 341: 112098. |
[21] | YU J G, RANA J R. Facile preparation and enhanced photocatalytic H2-production activity of Cu(OH)2 cluster modified TiO2. Energy & Environmental Science, 2011, 4: 1364. |
[22] | ZHAO H, WANG X S, FENG J F, et al. Synthesis and characterization of Zn2GeO4/Mg-MOF-74 composites with enhanced photocatalytic activity for CO2 reduction. Catalysis Science & Technology, 2018, 8: 1288. |
[23] | 聂千. 活性炭孔结构对CO2和CH4吸附分离性能的影响. 太原: 太原理工大学硕士学位论文, 2018. |
[24] | 白书培. 临界温度附近CO2在多孔固体上的吸附行为的研究. 天津: 天津大学博士学位论文, 2002. |
[25] | LI Z, LIU P, QU C J, et al, Porous metal-organic frameworks for carbon dioxide adsorptionand separation at low pressure. ACS Sustainable Chemistry & Engineering, 2020, 8: 15378. |
[26] | BAO Z B, YU L Y, REN Q L, et al. Adsorption of CO2 and CH4 on a magnesium-based metal organic framework. Journal of Colloid & Interface Science, 2011, 353(2): 549. |
[27] | LI N, CHANG Z, HUANG H, et al. Specific K+binding sites as CO2 traps in a porous MOF for enhanced CO2 selective sorption. Small, 2019, 29: 1900426. |
[28] | 杨家佳. 金属-有机骨架材料Mg-MOF-74及其衍生物吸附分离二氧化碳性能研究. 重庆: 重庆大学硕士学位论文, 2018. |
[29] | 赵玲, 刘恒恒, 胡晴, 等. 金属有机骨架材料MOF-5催化吸附SO2. 环境化学, 2017, 36(9): 1914. |
[30] |
HAN F N, LIU H P, CHENG W Q, et al. Highly selective conversion of CO2 to methanol on the CuZnO-ZrO2 solid solution with the assistance of plasma. RSC Advances, 2020, 10(56): 33620.
DOI URL |
[31] | CASCO M E., MARTĺNEZ-ESCANDELL M M, SILVESTRE- ALBERO J S, et al. Effect of the porous structure in carbon materials for CO2 capture at atmospheric and high-pressure. Carbon, 2014, 67: 230. |
[32] | SUN X J, WANG C P, PAN X Y, et al. Application of MOFs-based porous carbon materials in gas adsorption and separation. Chinese Science Bulletin, 2021, 66(27): 3590. |
[33] | 闫鹏.微孔锌/钴金属有机框架材料的合成及其气体吸附分离性能研究. 内蒙古: 内蒙古工业大学博士学位论文, 2020. |
[1] | 马彬彬, 钟婉菱, 韩涧, 陈椋煜, 孙婧婧, 雷彩霞. ZIF-8/TiO2复合介观晶体的制备及光催化活性[J]. 无机材料学报, 2024, 39(8): 937-944. |
[2] | 靳宇翔, 宋二红, 朱永福. 3d过渡金属单原子掺杂石墨烯缺陷电催化还原CO2的第一性原理研究[J]. 无机材料学报, 2024, 39(7): 845-852. |
[3] | 施桐, 甘乔炜, 刘东, 张莹, 冯浩, 李强. 自支撑Bi@Cu纳米树电极高效电化学还原CO2制甲酸[J]. 无机材料学报, 2024, 39(7): 810-818. |
[4] | 曹青青, 陈翔宇, 吴健豪, 王筱卓, 王乙炫, 王禹涵, 李春颜, 茹菲, 李兰, 陈智. SiO2增强自敏性氮化碳微球可见光降解盐酸四环素的研究[J]. 无机材料学报, 2024, 39(7): 787-792. |
[5] | 王兆阳, 秦鹏, 蒋胤, 冯小波, 杨培志, 黄富强. 三明治结构钌插层二氧化钛光催化四环素降解性能研究[J]. 无机材料学报, 2024, 39(4): 383-389. |
[6] | 吴光宇, 舒松, 张洪伟, 李建军. 接枝内酯基活性炭增强苯乙烯吸附性能研究[J]. 无机材料学报, 2024, 39(4): 390-398. |
[7] | 叶茂森, 王耀, 许冰, 王康康, 张胜楠, 冯建情. II/Z型Bi2MoO6/Ag2O/Bi2O3异质结可见光催化降解四环素[J]. 无机材料学报, 2024, 39(3): 321-329. |
[8] | 谢天, 宋二红. 弹性应变对C、H、O在过渡金属氧化物表面吸附的影响[J]. 无机材料学报, 2024, 39(11): 1292-1300. |
[9] | 晁少飞, 薛艳辉, 吴琼, 伍复发, MUHAMMAD Sufyan Javed, 张伟. MXene异质结Ti-O-H-O电子快速通道促进高效率储钾[J]. 无机材料学报, 2024, 39(11): 1212-1220. |
[10] | 李秋实, 殷广明, 吕伟超, 王怀尧, 李婧琳, 杨红光, 关芳芳. Na+/g-C3N4材料的制备及光催化降解亚甲基蓝机理[J]. 无机材料学报, 2024, 39(10): 1143-1150. |
[11] | 王艳莉, 钱心怡, 沈春银, 詹亮. 石墨烯基介孔锰铈氧化物催化剂: 制备和低温催化还原NO[J]. 无机材料学报, 2024, 39(1): 81-89. |
[12] | 李跃军, 曹铁平, 孙大伟. S型异质结Bi4O5Br2/CeO2的制备及其光催化CO2还原性能[J]. 无机材料学报, 2023, 38(8): 963-970. |
[13] | 伍林, 胡明蕾, 王丽萍, 黄少萌, 周湘远. TiHAP@g-C3N4异质结的制备及光催化降解甲基橙[J]. 无机材料学报, 2023, 38(5): 503-510. |
[14] | 马晓森, 张丽晨, 刘砚超, 汪全华, 郑家军, 李瑞丰. 13X@SiO2合成及其甲苯吸附性能[J]. 无机材料学报, 2023, 38(5): 537-543. |
[15] | 郭春霞, 陈伟东, 闫淑芳, 赵学平, 杨傲, 马文. 埃洛石纳米管负载锆氧化物吸附水中砷的研究[J]. 无机材料学报, 2023, 38(5): 529-536. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||