无机材料学报 ›› 2022, Vol. 37 ›› Issue (3): 317-324.DOI: 10.15541/jim20210624 CSTR: 32189.14.10.15541/jim20210624
所属专题: 增材制造专题(2022); 【制备方法】3D打印(202409)
朱俊逸(), 张成, 罗忠强, 曹继伟, 刘志远, 王沛, 刘长勇, 陈张伟(
)
收稿日期:
2021-10-08
修回日期:
2021-10-21
出版日期:
2022-03-20
网络出版日期:
2021-11-01
通讯作者:
陈张伟, 教授. E-mail: chen@szu.edu.cn
作者简介:
朱俊逸(1996-), 男, 硕士研究生. E-mail: 386398374@qq.com
基金资助:
ZHU Junyi(), ZHANG Cheng, LUO Zhongqiang, CAO Jiwei, LIU Zhiyuan, WANG Pei, LIU Changyong, CHEN Zhangwei(
)
Received:
2021-10-08
Revised:
2021-10-21
Published:
2022-03-20
Online:
2021-11-01
Contact:
CHEN Zhangwei, professor. E-mail: chen@szu.edu.cn
About author:
ZHU Junyi (1996-), male, Master candidate. E-mail: 386398374@qq.com
Supported by:
摘要:
光固化3D打印是制造高度复杂结构陶瓷的一种有效方法。打印的样件需要经历脱脂和烧结等热处理才能成为可用的陶瓷件, 脱脂工艺对打印件性能影响巨大。本工作通过研究脱脂工艺对DLP光固化3D打印制备的堇青石陶瓷性能的影响规律, 建立缺陷抑制策略。比较并分析了脱脂气氛和升温速率对陶瓷样件的表面裂纹和元素分布状态的影响, 还对比进一步烧结后样件显微组织、尺寸收缩率、相对密度和弯曲强度等性能。研究发现脱脂气氛对样件各性能影响最大, 使用氩气脱脂可显著降低表面裂纹, 提高相对密度与弯曲强度; 并确定最佳升温速率为1 ℃/min。最终获得表面完整无裂纹且相对密度为(94.6±0.3)%, 弯曲强度为(94.3±3.2) MPa的堇青石陶瓷样件。本研究为光固化3D打印堇青石陶瓷的无缺陷制造与应用提供了科学依据与技术参考。
中图分类号:
朱俊逸, 张成, 罗忠强, 曹继伟, 刘志远, 王沛, 刘长勇, 陈张伟. 脱脂工艺对光固化3D打印堇青石陶瓷性能的影响[J]. 无机材料学报, 2022, 37(3): 317-324.
ZHU Junyi, ZHANG Cheng, LUO Zhongqiang, CAO Jiwei, LIU Zhiyuan, WANG Pei, LIU Changyong, CHEN Zhangwei. Influence of Debinding Process on the Properties of Photopolymerization 3D Printed Cordierite Ceramics[J]. Journal of Inorganic Materials, 2022, 37(3): 317-324.
图2 堇青石陶瓷生坯的热重分析结果与脱脂和烧结曲线
Fig. 2 TG/DSC curves, debinding and sintering curves of printed cordierite green body (a) TG/DSC curves; (b) Debinding curve; (c) Sintering curve
图3 不同升温速率脱脂后的样件表面宏观形貌
Fig. 3 Surface macro-graphs of sample after debinding at different heating rates In air: (a) 0.1 ℃/min; (b) 0.5 ℃/min; (c) 1 ℃/min; (d) 3 ℃/min; (e) 5 ℃/min; In argon: (f) 0.1 ℃/min; (g) 0.5 ℃/min; (h) 1 ℃/min; (i) 3 ℃/min; (j) 5 ℃/min
图4 空气气氛下脱脂后样件的EDS元素分析
Fig. 4 Element analysis of sample after debinding in air (a) SEM image; EDS mappings of (b) Al, (c) Mg, (d) O and (e) Si; (f) EDS spectrum
图5 氩气气氛下脱脂后样件EDS元素分析
Fig. 5 Element analysis after debinding in argon (a) SEM image; EDS mappings of (b) Al, (c) Mg, (d) C and (e) O; (f) Si; (g) EDS spectrum
图6 在氩气气氛下脱脂后的样件表面微观形貌
Fig. 6 Micrographs of sample surfaces after debinding in argon(a) 0.1 ℃/min; (b) 0.5 ℃/min; (c) 1 ℃/min; (d) 3 ℃/min; (e) 5 ℃/min
图7 在不同气氛、不同脱脂升温速率下脱脂并经烧结后样件的性能
Fig. 7 Properties of samples after debinding in different atmospheres followed by sintering (a) Shrinkage rate-debinding in air; (b) Shrinkage rate-debinding in argon; (c) Relative density; (d) Bending strength
图8 优化脱脂策略后烧结的样件
Fig. 8 Final cordierite ceramics prepared with optimized debinding scheme followed by sintering (a, b) Dense rectangular sample; (c) Honeycomb structures with complex inter-crossing channels
[1] |
CAMERUCCI M A, URRETAVIZCAYA G, CASTRO M S, et al. Electrical properties and thermal expansion of cordierite and cordierite- mullite materials. Journal of the European Ceramic Society, 2001, 21(16): 2917-2923.
DOI URL |
[2] |
LAMARA S, REDAOUI D, SAHNOUNE F, et al. Microstructure, thermal expansion, hardness and thermodynamic parameters of cordierite materials synthesized from Algerian natural clay minerals and magnesia. Boletín de la Sociedad Española de Cerámica y Vidrio, 2020, 60(5): 291-306.
DOI URL |
[3] | SITTIAKKARANON S. Thermal shock resistance of mullite- cordierite ceramics from kaolin, talc and alumina raw materials. Materials Today: Proceedings, 2019, 17(4): 1864-1871. |
[4] |
CHEN Z, LIU C, LI J, et al. Mechanical properties and microstructures of 3D printed bulk cordierite parts. Ceramics International, 2019, 45(15): 19257-19267.
DOI URL |
[5] |
GÖKÇE H, AĞAOĞULLARI D, ÖVEÇOĞLU M L, et al. Characterization of microstructural and thermal properties of steatite/ cordierite ceramics prepared by using natural raw materials. Journal of the European Ceramic Society, 2011, 31(14): 2741-2747.
DOI URL |
[6] |
AVILA P, MONTES M, MIRÓ E E. Monolithic reactors for environmental applications: a review on preparation technologies. Chemical Engineering Journal, 2005, 109(1/2/3): 11-36.
DOI URL |
[7] |
DAS R N, MADHUSOODANA C D, OKADA K, Rheological studies on cordierite honeycomb extrusion. Journal of the European Ceramic Society, 2002, 22(16): 2893-2900.
DOI URL |
[8] |
LIANG Q, LI D, YANG G. Rapid fabrication of diamond-structured ceramic photonic crystals with graded dielectric constant and its controllable stop band properties. Ceramics International, 2013, 39(1): 153-157.
DOI URL |
[9] |
MELCHELS F P W, FEIJEN J, GRIJPMA D W. A review on stereolithography and its applications in biomedical engineering. Biomaterials, 2010, 31(24): 6121-6130.
DOI URL |
[10] |
ZHOU W, LI D, CHEN Z. Direct fabrication of an integral ceramic mould by stereolithography. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2010, 224(2): 237-243.
DOI URL |
[11] |
ZOCCA A, COLOMBO P, GOMES C M, et al. Additive manufacturing of ceramics: issues, potentialities, and opportunities. Journal of the American Ceramic Society, 2015, 98(7): 1983-2001.
DOI URL |
[12] |
CHEN Z, LI Z, LI J, et al. 3D printing of ceramics: a review. Journal of the European Ceramics Society, 2019, 39(4): 661-687.
DOI URL |
[13] |
CHEN Z, LI D, ZHOU W. Process parameters appraisal of fabricating ceramic parts based on stereolithography using the Taguchi method. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012, 226(7): 1249-1258.
DOI URL |
[14] |
LIU Y, CHEN Z, LI J, et al. 3D printing of ceramic cellular structures for potential nuclear fusion application. Additive Manufacturing, 2020, 35: 101348.
DOI URL |
[15] |
RASAKI S A, XIONG D, XIONG S, et al. Photopolymerization- based additive manufacturing of ceramics: a systematic review. Journal of Advanced Ceramics, 2021, 10(3): 442-471.
DOI URL |
[16] |
LIU C, XU F, LIU Y, et al. High mass loading ultrathick porous Li4Ti5O12 electrodes with improved areal capacity fabricated via low temperature direct writing. Electrochimica Acta, 2019, 314: 81-88.
DOI URL |
[17] |
WU Z, HUAN Z, ZHU Y, et al. 3D printing and characterization of microsphere hydroxyapatite scaffolds. Journal of Inorganic Materials, 2021, 36(6): 601-607.
DOI URL |
[18] |
CHEN Z, BRANDON N. Inkjet printing and nanoindentation of porous alumina multilayers. Ceramics International, 2016, 42(7): 8316-8324.
DOI URL |
[19] |
CHEN Z, OUYANG J, LIANG W, et al. Development and characterizations of novel aqueous-based LSCF suspensions for inkjet printing. Ceramics International, 2018, 44(11): 13381-13388.
DOI URL |
[20] |
ZHANG L, YANG X, XU X, et al. 3D printed zirconia ceramics via fused deposit modeling and its mechanical properties. Journal of Inorganic Materials, 2021, 36(4): 436-442.
DOI |
[21] |
LIU S, LI M, WU J, et al. Preparation of high-porosity Al2O3 ceramic foams via selective laser sintering of Al2O3 poly-hollow microspheres. Ceramics International, 2020, 46(4): 4240-4247.
DOI URL |
[22] |
FERRAGE L, BERTRAND G, LENORMAND P. Dense yttria- stabilized zirconia obtained by direct selective laser sintering. Additive Manufacturing, 2018, 21: 472-478.
DOI URL |
[23] |
MINASYAN T, LIU L, AGHAYAN M, et al. A novel approach to fabricate Si3N4 by selective laser melting. Ceramics International, 2018, 44(12): 13689-13694.
DOI URL |
[24] |
CHEN Z, LI J, LIU C, et al. Preparation of high solid loading and low viscosity ceramic slurries for photopolymerization-based 3D printing. Ceramics International, 2019, 45(9): 11549-11557.
DOI URL |
[25] |
SHUAI X, ZENG Y, LI P, et al. Fabrication of fine and complex lattice structure Al2O3 ceramic by digital light processing 3D printing technology. Journal of Materials Science, 2020, 55: 6771-6782.
DOI URL |
[26] | LI H, SONG L, SUN J, et al. Stereolithography-fabricated zirconia dental prostheses: concerns based on clinical requirements. Journal of Advances in Applied Ceramics, 2020, 119(5/6): 236-243. |
[27] |
FENG C, ZHANG C, HE R, et al. Additive manufacturing of hydroxyapatite bioceramic scaffolds: dispersion, digital light processing, sintering, mechanical properties, and biocompatibility. Journal of Advanced Ceramics, 2020, 9: 360-373.
DOI URL |
[28] |
HE R, DING G, ZHANG K, et al. Fabrication of SiC ceramic architectures using stereolithography combined with precursor infiltration and pyrolysis. Ceramics International, 2019, 45(11): 14006-14014.
DOI URL |
[29] |
ZHANG C, LUO Z, LIU C, et al. Dimensional retention of photocured ceramic units during 3D printing and sintering processes. Ceramics International, 2021, 47(8): 11097-11108.
DOI URL |
[30] |
CHEN Z, LIU C, LI J, et al. Mechanical properties and microstructures of 3D printed bulk cordierite parts. Ceramics International, 2019, 45(15): 19257-19267.
DOI URL |
[1] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[2] | 黄建锋, 梁瑞虹, 周志勇. W/Cr共掺杂对CaBi2Nb2O9陶瓷晶体结构及电学性能的影响[J]. 无机材料学报, 2024, 39(8): 887-894. |
[3] | 赵志翰, 郭鹏, 魏菁, 崔丽, 刘山泽, 张文龙, 陈仁德, 汪爱英. Ti-DLC薄膜压阻性能及载流子输运行为研究[J]. 无机材料学报, 2024, 39(8): 879-886. |
[4] | 范武刚, 曹雄, 周响, 李玲, 赵冠楠, 张兆泉. 8YSZ陶瓷在模拟压水堆水环境中的耐腐蚀性能[J]. 无机材料学报, 2024, 39(7): 803-809. |
[5] | 王康龙, 殷杰, 陈晓, 王力, 刘学建, 黄政仁. 颗粒级配对选区激光烧结打印结合常压固相烧结制备碳化硅陶瓷性能的影响[J]. 无机材料学报, 2024, 39(7): 754-760. |
[6] | 张育育, 吴轶城, 孙佳, 付前刚. 聚合物转化SiHfCN陶瓷的制备及其吸波性能[J]. 无机材料学报, 2024, 39(6): 681-690. |
[7] | 刘焱, 覃显鹏, 甘霖, 周国红, 章天金, 王士维, 陈鹤拓. 亚微米球形Y2O3粉体及其透明陶瓷的制备[J]. 无机材料学报, 2024, 39(6): 691-696. |
[8] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[9] | 孙海洋, 季伟, 王为民, 傅正义. TiB-Ti周期序构复合材料设计、制备及性能研究[J]. 无机材料学报, 2024, 39(6): 662-670. |
[10] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[11] | 刘国昂, 王海龙, 方成, 黄飞龙, 杨欢. B4C含量对(Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C陶瓷力学性能及抗氧化性能的影响[J]. 无机材料学报, 2024, 39(6): 697-706. |
[12] | 粟毅, 史扬帆, 贾成兰, 迟蓬涛, 高扬, 马青松, 陈思安. 浆料浸渍辅助PIP工艺制备C/HfC-SiC复合材料的微观结构及性能研究[J]. 无机材料学报, 2024, 39(6): 726-732. |
[13] | 郑斌, 康凯, 张青, 叶昉, 解静, 贾研, 孙国栋, 成来飞. 前驱体转化陶瓷法制备Ti3SiC2陶瓷及其热稳定性研究[J]. 无机材料学报, 2024, 39(6): 733-740. |
[14] | 郑雅雯, 张翠萍, 张瑞杰, 夏乾, 茹红强. 硼酸碳热还原-渗硅反应烧结制备碳化硼陶瓷复合材料[J]. 无机材料学报, 2024, 39(6): 707-714. |
[15] | 何宗倍, 陈放, 刘佃光, 李统业, 曾强. 模拟核芯FCM燃料的振荡烧结行为研究[J]. 无机材料学报, 2024, 39(5): 501-508. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||