[1] |
PADTURE N P, GELL M, JORDAN E H.Thermal barrier coatings for gas-turbine engine applications.Science, 2002, 296(5566): 280-284.
|
[2] |
PEREPEZKO J H.The hotter the engine, the better.Science, 2009, 326(5956): 1068-1069.
|
[3] |
HAN Z H, XU B S, WANG H J, et al.A comparison of thermal shock behavior between currently plasma spray and supersonic plasma spray CeO2-Y2O3-ZrO2 graded thermal barrier coatings. Surf. Coat. Technol., 2007, 201(9/10/11): 5253-5256.
|
[4] |
DU L Z, XU B S, DONG S J, et al.Sliding wear behavior of the supersonic plasma sprayed WC-Co coating in oil containing sand.Surf. Coat. Technol., 2008, 202(15): 3709-3714.
|
[5] |
ZHANG X C, XU B S, TU S T, et al.Effect of spraying power on the microstructure and mechanical properties of supersonic plasma- sprayed Ni-based alloy coatings.Appl. Surf. Sci., 2008, 254(20): 6318-6326.
|
[6] |
ZHANG X C, XU B S, WU Y X, et al.Porosity, mechanical properties, residual stresses of supersonic plasma-sprayed Ni-based alloy coatings prepared at different powder feed rates.Appl. Surf. Sci., 2008, 254(13): 3879-3889.
|
[7] |
BAI Y, HAN Z H, LI H Q, et al.Structure-property differences between supersonic and conventional atmospheric plasma sprayed zirconia thermal barrier coatings.Surf. Coat. Technol., 2011, 205(13/14): 3833-3839.
|
[8] |
BAI Y, HAN Z H, LI H Q, et al.High performance nanostructured ZrO2 based thermal barrier coatings deposited by high efficiency supersonic plasma spraying.Appl. Surf. Sci., 2011, 257(16): 7210-7216.
|
[9] |
YOKOI K.Numberical studies of droplet splashing on a dry surface: triggering a splash with the dynamic contact angle.Soft Matter, 2011, 7(11): 5120-5123.
|
[10] |
PASANDIDEH-FARD M, PERSHIN V SCHANDRA. Splat shapes in a thermal spray coating process: simulations and experiments.J. Therm. Spray Technol., 2002, 11(2): 206-217.
|
[11] |
BOBZIN K, BAGCIVAN N, PARKOT D.Simulation of PYSZ particle impact and solidification in atmospheric plasma spraying coating process.Surf. Coat. Technol., 2010, 204(8): 1211-1215.
|
[12] |
XIONG H B.Melting and oxidation behavior of in-flight particles in plasma spray process.Int. J. Heat Mass Transfer, 2005, 48(25/26): 5121-5133.
|
[13] |
LI L.Particle characterization and splat formation of plasma sprayed zirconia. J. Therm. Spray Technol., 2006, 15(1): 97-105.
|
[14] |
BERTAGNOLL M.Modeling of particles impacting on a rigid substrate under plasma spraying conditions.J. Therm. Spray Technol., 1995, 4(1): 41-49.
|
[15] |
KANG C W.Numerical and experimental investigations of splat geometric characteristics during oblique impact of plasma spraying.Appl. Surf. Sci., 2011, 257(24): 10363-10372.
|
[16] |
BRANDON J R.Phase stability of zirconia-based thermal barrier coatings. Part I. Zirconia-yttria alloys.Surf. Coat. Technol., 1991, 46(1): 75-90.
|
[17] |
ANDRE M.Thermal contact resistance between plasma-sprayed particles and flat surfaces.Int. J. Heat Mass Transfer, 2007, 50(9/10): 1737-1749.
|
[18] |
PASANDIDEH-FARD M.On the Spreading and solidification of molten particles in a plasma spray process: effect of thermal contact resistance.Plasma Chem. Plasma Process., 1996, 16(1): 83s-98s.
|
[19] |
FUKUMOTO M, HUANG Y.Flattening mechanism in thermal sprayed nickel particle impinging on flat substrate surface.J. Therm. Spray Technol., 1999, 8(3): 427-432.
|
[20] |
ZHAO W T, WU J H, BAI Y, et al.Melting refining mechanisms in supersonic atmospheric plasma spraying.Plasma Chem. Plasma Process., 2012, 32(6): 1227-1242.
|
[21] |
MADEJESKI J.Solidification of droplets on a cold surface. Int. J. Heat Mass Transfer., 1976, 19: 1009-1013.
|
[22] |
YOSHIDA T, OKADA T, HAMATAMI H, et al.Integrated fabrication process for solid oxide fuel cells using novel plasma spraying.Plasma. Sources Sci. Technol., 1992, 1: 195-201.
|
[23] |
LIU H, LAVERNIA E, RANGEL R.Numerical simulation of impingement of molten Ti, Ni, and W droplets on a flat substrate.J. Therm. Spray Technol., 1993, 2(4): 369-378.
|