[1] |
Zhao J, Duan K, Zhang J W, et al. Preparation of highly interconnected porous hydroxyapatite scaffolds by chitin gel-casting. Mater. Sci. Eng. C, 2011, 31(3): 697-701.
|
[2] |
Descamps M, Hornez J C, Leriche A. Manufacture of hydroxyapatite beads for medical applications. J. Eur. Ceram. Soc., 2009, 29(3): 369-375.
|
[3] |
Fathi M H, Hanifi A, Mortazavi V. Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder. J. Mater. Process Technol., 2008, 202(1/2/3): 536-542.
|
[4] |
Ruys A J, Wei M, Sorrell C C, et al. Sintering effects on the strength of hydroxyapatite. Biomaterials, 1995, 16(5): 409-415.
|
[5] |
Muralithran G, Ramesh S. The effects of sintering temperature on the properties of hydroxyapatite. Ceram. Int., 2000, 26(2): 221-230.
|
[6] |
Suchanek W, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J. Mater. Res., 1998, 13(1): 94-117.
|
[7] |
Rodríguez-Lorenzo L M, Vallet-Regí M, Ferreira J M F, et al. Hydroxyapatite ceramic bodies with tailored mechanical properties for different applications. J. Biomed. Mater. Res., 2002, 60(1): 159-166.
|
[8] |
Kokubo T, Kim H M, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials, 2003, 24(13): 2161-2175.
|
[9] |
Jalota S, Tas A C, Bhaduri S B. Microwave-assisted synthesis of calcium phosphate nanowhiskers. Mater. Res. Soc., 2004, 19(6): 1876-1881.
|
[10] |
Gibson I R, Ke S, Best S M, et al. Effect of powder characteristics on the sinterability of hydroxyapatite powders. J. Mater. Sci.: Mater. Med., 2001, 12(2): 163-171.
|
[11] |
Veljković Dj, Jokic B, Jankovic-Castvan I, et al. Sintering behaviour of nanosized HAp powder. Key Eng. Mater., 2007, 330-332(2): 259-262.
|
[12] |
Murray M G S, Wang J, Ponton C B, et al. An improvement in processing of hydroxyapatite ceramics. J. Mater. Sci., 1995, 30(12): 3061-3074.
|
[13] |
Gonda Y, Ioku K, Shibata Y, et al. Stimulatory effect of hydrothermally synthesized biodegradable hydroxyapatite granules on osteogenesis and direct association with osteoclasts. Biomaterials, 2009, 30(26): 4390-4400.
|
[14] |
Fujii S, Okada M, Furuzono T. Hydroxyapatite nanoparticles as stimulus-responsive particulate emulsifiers and building block for porous materials. J. Colloid. Interf. Sci., 2007, 315(1): 287-296.
|
[15] |
Marques da Silva H, Mateescu M, Ponche A, et al. Surface transformation of silicon-doped hydroxyapatite immersed in culture medium under dynamic and static conditions. Colloids Surf. B, 2010, 75(1): 349-355.
|
[16] |
Swain S K, Bhattacharyya S, Sarkar D. Preparation of porous scaffold from hydroxyapatite powders. Mater. Sci. Eng. C, 2011, 31(6): 1240-1244.
|
[17] |
Pual W, Nesamony J, Sharma C P. Delivery of insulin from hydroxyapatite ceramic microspheres: preliminary in vivo studies. J. Biomed. Mater. Res., 2002, 61(4): 660-662.
|
[18] |
Sun R X, Li M S, Lu Y P, et al. Dissolution behavior of hollow hydroxyapatite microspheres immersed in deionized water. Mater. Res. Bull., 2006, 41(6): 1138-1145.
|
[19] |
Teng S H, Chen L J, Guo Y C, et al. Formation of nano- hydroxyapatite in gelatin droplets and the resulting porous composite microspheres. J. Inorg. Biochem., 2007, 101(4): 686-691.
|
[20] |
Wang Q, Huang W H, Wang D P, et al. Preparation of hollow hydroxyapatite microspheres. J. Mater. Sci.: Mater. Med., 2006, 17(7): 641-646.
|
[21] |
Wang J W, Shaw L L. Morphology-enhanced low-temperature sintering of nanocrystalline hydroxyapatete. Adv. Mater., 2007, 19(17): 2364-2369.
|
[22] |
Chu C L, Zhu J C, Yin Z D, et al. Sintering behaviours and mechanical properties of dense hydroxyapatite (HA) bioceramics. J. Funct. Mater., 1999, 30(6): 606-609.
|