无机材料学报 ›› 2026, Vol. 41 ›› Issue (2): 193-200.DOI: 10.15541/jim20250085 CSTR: 32189.14.10.15541/jim20250085
侯佳兵(
), 胡强, 崔久治, 黄云迪, 王心蕊, 刘兴泉(
)
收稿日期:2025-02-25
修回日期:2025-05-19
出版日期:2025-06-27
网络出版日期:2025-06-27
通讯作者:
刘兴泉, 教授. E-mail: lxquan@uestc.edu.cn作者简介:侯佳兵(2000-), 男, 硕士研究生. E-mail: houjiabing10@163.com
基金资助:
HOU Jiabing(
), HU Qiang, CUI Jiuzhi, HUANG Yundi, WANG Xinrui, LIU Xingquan(
)
Received:2025-02-25
Revised:2025-05-19
Published:2025-06-27
Online:2025-06-27
Contact:
LIU Xingquan, professor. E-mail: lxquan@uestc.edu.cnAbout author:HOU Jiabing (2000-), male, Master candidate. E-mail: houjiabing10@163.com
Supported by:摘要:
高镍三元正极材料LiNixCoyMn1-x-yO2(NCM, x≥0.8)具有较高的能量密度和优异的放电性能, 是发展前景较好的一类锂离子电池正极材料, 但也面临着阳离子混排严重、高温和高截止电压下循环性能和安全性不佳等瓶颈。本研究将高熵(High-entropy, HE)掺杂改性策略引入高镍低钴的LiNi0.86Co0.04Mn0.1O2正极材料, 采用高温固相反应法合成了一种高镍单晶层状三元正极材料。在0.1C(1C=180 mA·g-1)倍率和25 ℃条件下, 改性后的材料具有197 mAh·g-1的可逆放电比容量, 能在高温环境和高截止电压下表现出很好的放电性能, 在0.5C、55 ℃和4.3 V条件下的放电比容量达到281 mAh·g-1, 在0.5C、25 ℃和4.5 V条件下的放电比容量最高达194 mAh·g-1。这种材料具有良好的层状结构, 微观上表现为纳米级一次颗粒的均匀排布, 具有更小的总阻抗。本工作显著提升了高镍三元正极材料在高温环境和高截止电压下的循环性能及安全性能, 为三元材料的去钴化、高镍化和实用化提供了一种很好的改性方法。
中图分类号:
侯佳兵, 胡强, 崔久治, 黄云迪, 王心蕊, 刘兴泉. 高镍单晶层状三元正极材料的高熵策略掺杂改性研究[J]. 无机材料学报, 2026, 41(2): 193-200.
HOU Jiabing, HU Qiang, CUI Jiuzhi, HUANG Yundi, WANG Xinrui, LIU Xingquan. High-entropy Doping Modification of High-nickel Single-crystal Layered Ternary Cathode Material[J]. Journal of Inorganic Materials, 2026, 41(2): 193-200.
图6 HE-NCM-sc与LE-NCM-sc电池的电化学性能
Fig. 6 Electrochemical performance of HE-NCM-sc and LE-NCM-sc cells (a) Rate performance; (b) Cycling performance at 0.1C; (c) Initial charging and discharging curves at 0.1C; (d) Cycling performance at 0.5C within the voltage range of 2.8−4.5 V; (e) Cycling performance at 0.5C and 55 ℃; (f) EIS spectra
| [1] |
MAO M, JI X, WANG Q, et al. Anion-enrichment interface enables high-voltage anode-free lithium metal batteries. Nature Communications, 2023, 14: 1082.
DOI PMID |
| [2] | 朱亮, 严长青, 倪涛来. 锂离子电池预锂化技术的研究现状. 电池, 2018, 48(3): 206. |
| [3] | 李鹏飞, 李威, 许春阳, 等. 锂离子电池三元正极材料掺杂改性研究进展. 郑州大学学报(理学版), 2024, 56(5): 80. |
| [4] |
YANG T, ZHANG K, ZUO Y, et al. Ultrahigh-nickel layered cathode with cycling stability for sustainable lithium-ion batteries. Nature Sustainability, 2024, 7(9): 1204.
DOI |
| [5] |
TAN S, SHADIKE Z, LI J, et al. Additive engineering for robust interphases to stabilize high-Ni layered structures at ultra-high voltage of 4.8 V. Nature Energy, 2022, 7(6): 484.
DOI |
| [6] |
CAO L, CHU M, LI Y, et al. In situ-constructed multifunctional composite anode with ultralong-life toward advanced lithium- metal batteries. Advanced Materials, 2024, 36(41): 2406034.
DOI URL |
| [7] |
ZHANG R, WANG C, ZOU P, et al. Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature, 2022, 610(7930): 67.
DOI |
| [8] |
DOU S. Review and prospect of layered lithium nickel manganese oxide as cathode materials for Li-ion batteries. Journal of Solid State Electrochemistry, 2013, 17: 911.
DOI URL |
| [9] |
QIN L, YU H, JIANG X, et al. All-dry solid-phase synthesis of single-crystalline Ni-rich ternary cathodes for lithium-ion batteries. Science China Materials, 2024, 67(2): 650.
DOI |
| [10] | LI H, LI J, ZAKER N, et al. Synthesis of single crystal LiNi0.88Co0.09Al0.03O2 with a two-step lithiation method. Journal of the Electrochemical Society, 2019, 166(10): A1956. |
| [11] |
PANG P, TAN X, WANG Z, et al. Crack-free single-crystal LiNi0.83Co0.10Mn0.07O2 as cycling/thermal stable cathode materials for high-voltage lithium-ion batteries. Electrochimica Acta, 2021, 365: 137380.
DOI URL |
| [12] |
SONG J, HUANG L, YANG G, et al. Solid-state approach for synthesizing single crystal LiNi0.8Co0.1Mn0.1O2 cathode of lithium-ion batteries. Journal of Alloys and Compounds, 2023, 946: 169358.
DOI URL |
| [13] |
LEE S H, SIM S J, JIN B S, et al. High performance well-developed single crystal LiNi0.91Co0.06Mn0.03O2 cathode via LiCl-NaCl flux method. Materials Letters, 2020, 270: 127615.
DOI URL |
| [14] |
ZHOU W, HUANG H, LIU X, et al. Perspective on the preparation methods of single crystalline high nickel oxide cathode materials. Advanced Energy Materials, 2023, 13(32): 2300378.
DOI URL |
| [15] |
YU B, WANG Y, LI J, et al. Recent advances on low-Co and Co-free high entropy layered oxide cathodes for lithium-ion batteries. Nanotechnology, 2023, 34(45): 452501.
DOI |
| [16] |
GAO H, LI J, ZHANG F, et al. Revealing the potential and challenges of high-entropy layered cathodes for sodium-based energy storage. Advanced Energy Materials, 2024, 14(20): 2304529.
DOI URL |
| [17] |
BÉRARDAN D, FRANGER S, MEENA A K, et al. Room temperature lithium superionic conductivity in high entropy oxides. Journal of Materials Chemistry A, 2016, 4(24): 9536.
DOI URL |
| [18] |
XU Z, CHEN X, FAN W, et al. High-entropy rock-salt surface layer stabilizes the ultrahigh-Ni single-crystal cathode. ACS Nano, 2024, 18(49): 33706.
DOI URL |
| [19] |
SARKAR A, VELASCO L, WANG D, et al. High entropy oxides for reversible energy storage. Nature Communications, 2018, 9: 3400.
DOI PMID |
| [20] |
TAN X, ZHANG Y, XU S, et al. High-entropy surface complex stabilized LiCoO2 cathode. Advanced Energy Materials, 2023, 13(24): 2300147.
DOI URL |
| [21] |
ZHAO C, WANG C, LIU X, et al. Suppressing strain propagation in ultrahigh-Ni cathodes during fast charging via epitaxial entropy-assisted coating. Nature Energy, 2024, 9(3): 345.
DOI |
| [22] | SONG J, NING F, ZUO Y, et al. Entropy stabilization strategy for enhancing the local structural adaptability of Li-rich cathode materials. Advanced Materials, 2023, 35(7): 2208726. |
| [23] |
LIU S, LIU F, ZHAO S, et al. A high-entropy engineering on sustainable anionic redox Mn-based cathode with retardant stress for high-rate sodium-ion batteries. Angewandte Chemie International Edition, 2025, 64(10): e202421089.
DOI URL |
| [24] | ZHOU J, HU J, ZHOU X, et al. High-entropy doping for high-performance zero-cobalt high-nickel layered cathode materials. Energy & Environmental Science, 2025, 18(1): 347. |
| [25] |
STURMAN J, YIM C H, BARANOVA E A, et al. Communication- design of LiNi0.2Mn0.2Co0.2Fe0.2Ti0.2O2 as a high-entropy cathode for lithium-ion batteries guided by machine learning. Journal of the Electrochemical Society, 2021, 168(5): 050541.
DOI |
| [26] |
XU J, YOU J, WU Y, et al. Building an entropy-assisted enhanced surface on ultrahigh nickel cathodes to improve electrochemical stability. Journal of Colloid and Interface Science, 2025, 682: 961.
DOI PMID |
| [27] | ZENG C, FAN F, ZHENG R, et al. Structure and charge regulation strategy enabling superior cycling stability of Ni-rich cathode materials. ACS Applied Materials & Interfaces, 2024, 16(9): 11377. |
| [28] |
REN J, LIU Z, TANG Y, et al. Enhancing electrochemical performance of nickel-rich NCM cathode material through Nb modification across a wide temperature range. Journal of Power Sources, 2024, 606: 234522.
DOI URL |
| [29] |
HUANG L, ZHU J, LIU J, et al. Emerging high-entropy strategy: a booster to the development of cathode materials for power batteries. Journal of Advanced Ceramics, 2024, 13(8): 1093.
DOI URL |
| [30] |
LI L, RAN Q, HAO S, et al. Dual functions of zirconium metaphosphate modified high-nickel layered oxide cathode material with enhanced electrochemical performance. Journal of Colloid and Interface Science, 2022, 615: 554.
DOI PMID |
| [31] | YANG S, FAN Q, SHI Z, et al. Superior stability secured by a four-phase cathode electrolyte interface on a Ni-rich cathode for lithium ion batteries. ACS Applied Materials & Interfaces, 2019, 11(40): 36742. |
| [32] | LI X, ZHANG K, WANG M, et al. Dual functions of zirconium modification on improving the electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2. Sustainable Energy & Fuels, 2018, 2(2): 413. |
| [33] |
SUN G, ZHUANG S, JIANG S, et al. Elevating cycle stability of Ni-rich NCM811 cathode via single-crystallization integrating dual-modification strategy for lithium-ion batteries. Journal of Alloys and Compounds, 2024, 976: 173097.
DOI URL |
| [1] | 王晓波, 朱于良, 薛稳超, 史汝川, 骆柏锋, 罗骋韬. PT含量变化对PMN-PT单晶的大功率性能影响[J]. 无机材料学报, 2025, 40(7): 840-846. |
| [2] | 余乐洋阳, 赵芳霞, 张舒心, 徐以祥, 牛亚然, 张振忠, 郑学斌. 感应等离子球化技术制备喷涂用高熵硼化物粉体[J]. 无机材料学报, 2025, 40(7): 808-816. |
| [3] | 崔宁, 张玉新, 王鲁杰, 李彤阳, 于源, 汤华国, 乔竹辉. (TiVNbMoW)Cx高熵陶瓷的单相形成过程与碳空位调控[J]. 无机材料学报, 2025, 40(5): 511-520. |
| [4] | 李紫薇, 弓伟露, 崔海峰, 叶丽, 韩伟健, 赵彤. 前驱体法制备(Zr, Hf, Nb, Ta, W)C-SiC复相陶瓷及性能研究[J]. 无机材料学报, 2025, 40(3): 271-280. |
| [5] | 樊文楷, 杨潇, 李宏华, 李永, 李江涛. 无压烧结制备(Y0.2Gd0.2Er0.2Yb0.2Lu0.2)2Zr2O7高熵陶瓷及其高温抗CMAS腐蚀性能[J]. 无机材料学报, 2025, 40(2): 159-167. |
| [6] | 刘弘明, 张金柯, 陈正鹏, 李明飞, 钱秀洋, 孙传骐, 熊凯, 饶睦敏, 陈创庭, 高源, 凌意瀚. B位高熵策略提高La0.7Sr0.3FeO3-δ基阴极性能[J]. 无机材料学报, 2025, 40(12): 1433-1442. |
| [7] | 鲍伟超, 郭晓杰, 辛晓婷, 彭湃, 王新刚, 刘吉轩, 张国军, 许钫钫. 在碳化物陶瓷中构筑金属原子层分相共生结构[J]. 无机材料学报, 2025, 40(1): 17-22. |
| [8] | 李刘媛, 黄开明, 赵秀艺, 刘会超, 王超. RE-Si-Al-O玻璃相对高熵稀土双硅酸盐微结构及耐CMAS腐蚀性能的影响[J]. 无机材料学报, 2024, 39(7): 793-802. |
| [9] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
| [10] | 刘国昂, 王海龙, 方成, 黄飞龙, 杨欢. B4C含量对(Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C陶瓷力学性能及抗氧化性能的影响[J]. 无机材料学报, 2024, 39(6): 697-706. |
| [11] | 张睿, 张侃, 袁梦雅, 谷鑫磊, 郑伟涛. 氮空位调控晶格畸变度强化(NbMoTaW)Nx薄膜的力学性质和耐磨损性[J]. 无机材料学报, 2024, 39(6): 715-725. |
| [12] | 张文宇, 郭瑞华, 岳全鑫, 黄雅荣, 张国芳, 关丽丽. 高熵磷化物双功能催化剂的制备及高效电解水性能[J]. 无机材料学报, 2024, 39(11): 1265-1274. |
| [13] | 郭凌翔, 唐颖, 黄世伟, 肖博澜, 夏东浩, 孙佳. C/C复合材料高熵氧化物涂层抗烧蚀性能[J]. 无机材料学报, 2024, 39(1): 61-70. |
| [14] | 郭天民, 董江波, 陈正鹏, 饶睦敏, 李明飞, 李田, 凌意瀚. 中温固体氧化物燃料电池的高熵双钙钛矿阴极材料: 兼容性与活性研究[J]. 无机材料学报, 2023, 38(6): 693-700. |
| [15] | 张守超, 陈洪雨, 刘洪飞, 杨羽, 李欣, 刘德峰. 6H-SiC中子辐照肿胀高温回复及光学特性研究[J]. 无机材料学报, 2023, 38(6): 678-686. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||