无机材料学报 ›› 2025, Vol. 40 ›› Issue (7): 817-825.DOI: 10.15541/jim20250060

• 研究论文 • 上一篇    下一篇

ZrB2-HfSi2复相陶瓷显微组织及其核-周结构形成机制

魏志帆(), 陈国清(), 祖宇飞, 刘渊, 李明浩, 付雪松, 周文龙   

  1. 大连理工大学 材料科学与工程学院, 大连 116085
  • 收稿日期:2025-02-17 修回日期:2025-03-20 出版日期:2025-07-20 网络出版日期:2025-03-25
  • 通讯作者: 陈国清, 教授. E-mail: gqchen@dlut.edu.cn
  • 作者简介:魏志帆(1993-), 男, 博士. E-mail: 424380067@qq.com
  • 基金资助:
    国家自然科学基金(52075073)

ZrB2-HfSi2 Ceramics: Microstructure and Formation Mechanism of Core-rim Structure

WEI Zhifan(), CHEN Guoqing(), ZU Yufei, LIU Yuan, LI Minghao, FU Xuesong, ZHOU Wenlong   

  1. School of Materials Science and Engineering, Dalian University of Technology, Dalian 116085, China
  • Received:2025-02-17 Revised:2025-03-20 Published:2025-07-20 Online:2025-03-25
  • Contact: CHEN Guoqing, professor. E-mail: gqchen@dlut.edu.cn
  • About author:WEI Zhifan (1993-), male, PhD. E-mail: 424380067@qq.com
  • Supported by:
    National Natural Science Foundation of China(52075073)

摘要:

近年来, ZrB2作为超高温陶瓷(UHTCs)的代表性材料, 已成为新一代空天飞行器热端部件重要的候选材料体系。然而, 其实际应用受限于材料制备以及复杂构件的加工难题。为此本研究通过引入HfSi2作为烧结助剂, 优化ZrB2基UHTCs的烧结工艺, 重点解决传统ZrB2基陶瓷因较低的扩散系数而导致致密化困难的难题。研究聚焦于核-周结构硼化物的形成机制以及其对ZrB2-HfSi2陶瓷致密化的辅助作用。采用1600 ℃热压烧结制备了ZrB2-HfSi2陶瓷, 结果表明, 在烧结过程中, HfSi2相软化能够有效填充颗粒间隙, 从而实现ZrB2-HfSi2陶瓷的低温烧结。同时, 在保温阶段, Hf与Zr原子通过溶解-再沉淀机制形成具有核-周结构的ZrB2/(Zr,Hf)B2, 促进了烧结粉体之间的物质交换, 从而加速了ZrB2-HfSi2陶瓷的致密化。此外, 该结构主要由核心ZrB2及其周边(Zr,Hf)B2组成, 具有完全共格界面(P6/mmm六方结构), 晶格失配度低(<5%), 界面稳定。ZrB2-HfSi2陶瓷的抗压强度、显微硬度以及断裂韧性分别为(1333±83) MPa、(15.86±0.72) GPa以及(2.01±0.36) MPa·m1/2。该陶瓷主要表现为典型的沿晶断裂形式, 只有少数解理面上出现核-周结构特征。本研究为实现UHTCs低温烧结提供了重要的参考价值。

关键词: ZrB2-HfSi2陶瓷, HfSi2烧结助剂, 致密化, 核-周结构, 共格界面

Abstract:

In recent years, ZrB2, as a representative material of ultra-high temperature ceramics (UHTCs), has become an important candidate material system for components of new generation aerospace vehicles. However, its practical application is limited by difficulties in material preparation and processing of complex components. This study aims to optimize sintering process of ZrB2-based UHTCs by introducing HfSi2 as a sintering aid, specifically addressing the challenge of densification caused by low intrinsic diffusion coefficient of traditional ZrB2 ceramics. The research focuses on elucidating formation mechanism of core-rim structured borides and their role in enhancing densification of ZrB2-HfSi2 ceramics. Dense ZrB2-HfSi2 ceramics were successfully fabricated via hot-press sintering at 1600 ℃. The results reveal that softening of HfSi2 phase during sintering effectively fills interparticle gaps, thereby facilitating low-temperature densification. Furthermore, during the holding stage, interdiffusion of Hf and Zr atoms through a dissolution-reprecipitation mechanism facilitates formation of a core-rim structured ZrB2/(Zr,Hf)B2 composite. This core-rim structure consists of ZrB2 core encased by a (Zr,Hf)B2 rim, characterized by a fully coherent interface (hexagonal P6/mmm symmetry) with a low lattice mismatch (<5%), ensuring interfacial stability. The ZrB2-HfSi2 ceramic exhibits a compressive strength of (1333±83) MPa, a Vickers hardness of (15.86±0.72) GPa, and a fracture toughness of (2.01±0.36) MPa·m1/2. The ZrB2-HfSi2 ceramic demonstrates typical intergranular fracture behavior, with only a limited number of cleavage planes displaying core-rim structural features. These findings provide critical insights into low-temperature sintering of UHTCs and underscore potential of core-rim structures in advancing the preparation of high-performance ceramics.

Key words: ZrB2-HfSi2 ceramic, HfSi2 sintering aid, densification, core-rim structure, coherent interface

中图分类号: