| [1] | 朱铁军, 赵新兵. β-FeSi2热电材料的性能优化及测试方法. 材料科学与工程, 1999(4): 55-59. | 
																													
																						| [2] | ZHU T J, CAO Y Q, ZHANG Q,et al. Bulk nanostructured thermoelectric materials: preparation, structure and properties. Journal of Electronic Materials, 2010, 39(9): 1990-1995. | 
																													
																						| [3] | YU C, ZHU T J, SHI R Z,et al. High-performance half-heusler thermoelectric materials Hf1-xZrxNiSn1-ySby prepared by levitation melting and spark plasma sintering. Acta Materialia, 2009, 57(9): 2757-2764. | 
																													
																						| [4] | XIE H H, WANG H, PEI Y Z,et al. Beneficial contribution of alloy disorder to electron and phonon transport in half-Heusler thermoelectric materials. Advanced Functional Materials, 2013, 23(41): 5123-5130. | 
																													
																						| [5] | CHEN Z W, ZHANG X Y, PEI Y Z, et al. Manipulation of phonon transport in thermoelectrics. Advanced Materials, 2018, 30(17): 1705617-1-12. | 
																													
																						| [6] | MOSHWAN R, YANG L, ZOU J, et al. Eco-friendly SnTe thermoelectric materials: progress. Eco-friendly SnTe thermoelectric materials: progress and future challenges. Advanced Functional Materials, 2017, 27(43): 1703278-1-18. | 
																													
																						| [7] | AL RAHAL AL ORABI R, MECHOLSKY N A, HWANG J,et al. Band degeneracy, low thermal conductivity, and high thermoelectric figure of merit in SnTe-CaTe alloys. Chemistry of Materials, 2016, 28(1): 376-384. | 
																													
																						| [8] | TAN X F, LIU G Q, XU J T,et al. Thermoelectric properties of In-Hg co-doping in SnTe: energy band engineering. Journal of Materiomics, 2018, 4(1): 62-67. | 
																													
																						| [9] | JIANG Q H, YANG J Y, LIU Y, et al. Microstructure tailoring in nanostructured thermoelectric materials. Journal of Advanced Dielectrics, 2016, 6(1): 1630002-1-16. | 
																													
																						| [10] | BISWAS K, HE J Q, WANG G Y,et al. High thermoelectric figure of merit in nanostructured p-type PbTe-MTe (M=Ca, Ba). Energy & Environmental Science, 2011, 4(11): 4675-4684. | 
																													
																						| [11] | HERMAN F, KORTUM R, ORTENBURGER I, et al. Relativistic band structure of GeTe. Relativistic band structure of GeTe, SnTe, PbTe, PbSe,PbS. Journal de Physique Colloques, 1968, 29(C4): C4-62-C64-77. | 
																													
																						| [12] | BREBRICK R F.Deviations from stoichiometry and electrical properties in SnTe.Journal of Physics and Chemistry of Solids, 1963, 24(1): 27-36. | 
																													
																						| [13] | BREBRICK R F, STRAUSS A J.Anomalous thermoelectric power as evidence for two-valence bands in SnTe.Physical Review, 1963, 131(1): 104-110. | 
																													
																						| [14] | CROCKER A J, ROGERS L M.Interpretation of the Hall coefficient, electrical resistivity and seebeck coefficient of p-type lead telluride.British Journal of Applied Physics, 1967, 18(5): 563. | 
																													
																						| [15] | VEDENEEV V P, KRIVORUCHKO S P, SABO E P.Tin telluride based thermoelectrical alloys.Semiconductors, 1998, 32(3): 241-244. | 
																													
																						| [16] | ZHAO L D, ZHANG X, WU H J,et al. Enhanced thermoelectric properties in the counter-doped SnTe system with strained endotaxial SrTe. Journal of the American Chemical Society, 2016, 138(7): 2366-2373. | 
																													
																						| [17] | TAN G J, ZHAO L D, SHI F Y,et al. High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach. Journal of the American Chemical Society, 2014, 136(19): 7006-7017. | 
																													
																						| [18] | PEI Y Z, ZHENG L L, LI W,et al. Interstitial point defect scattering contributing to high thermoelectric performance in SnTe. Advanced Electronic Materials, 2016, 2(6): 1600019. | 
																													
																						| [19] | ZHOU Z W, YANG J Y, JIANG Q H,et al. Multiple effects of Bi doping in enhancing the thermoelectric properties of SnTe. Journal of Materials Chemistry A, 2016, 4(34): 13171-13175. | 
																													
																						| [20] | ZHENG L L, LI W, LIN S Q,et al. Interstitial defects improving thermoelectric SnTe in addition to band convergence. ACS Energy Letters, 2017, 2(3): 563-568. | 
																													
																						| [21] | 陶东平,杨显万. 氧化亚锡歧化还原动力学和二氧化锡还原机理. 中国有色金属学报, 1998(1): 129-133. | 
																													
																						| [22] | PEI Y Z, SHI X Y, LALONDE A,et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011, 473(7345): 66. | 
																													
																						| [23] | LITTLEWOOD P B, MIHAILA B, SCHULZE R K, et al. Band structure of SnTe studied by photoemission spectroscopy. Physical Review Letters, 2010, 105(8): 086404-1-4. | 
																													
																						| [24] | LIU W S, ZHANG Q Y, LAN Y C,et al. Thermoelectric property studies on Cu-doped n-type CuxBi2Te2.7Se0.3 nanocomposites. Advanced Energy Materials, 2011,1(4): 577-587. | 
																													
																						| [25] | TAN G J, SHI F Y, HAO S H,et al. Codoping in SnTe: enhancement of thermoelectric performance through synergy of resonance levels and band convergence. Journal of the American Chemical Society, 2015, 137(15): 5100-5112. | 
																													
																						| [26] | ZHANG Q, LIAO B L, LAN Y C,et al. High thermoelectric performance by resonant dopant indium in nanostructured SnTe. Proceedings of the National Academy of Sciences, 2013, 110(33): 13261-13266. |