无机材料学报

• • 上一篇    下一篇

层状结构第二相增强BiFeO3-BaTiO3陶瓷电阻率研究

康文烁1,2, 郭晓杰1,2, 邹凯1,2, 赵祥永3, 周志勇1, 梁瑞虹1   

  1. 1.中国科学院 上海硅酸盐研究所, 中国科学院无机功能材料与器件重点实验室, 上海 200050;
    2.中国科学院大学, 北京 100049;
    3.上海师范大学 光电子材料与器件重点实验室, 上海 200234
  • 收稿日期:2023-04-06 修回日期:2023-05-10 出版日期:2023-09-12 网络出版日期:2023-09-12
  • 作者简介:康文烁(1994-), 男, 博士研究生. E-mail: kangwenshuo20@mails.ucas.ac.cn
  • 基金资助:
    国家自然科学基金(51972321, U2241242); 国家重点研发计划(2022YFF0709702); 中国科学院先导计划(XDA2203003)

Enhanced Resistivity Induced by the Second Phase with Layered Structure in BiFeO3-BaTiO3 Ceramics

KANG Wenshuo1,2, GUO Xiaojie1,2, ZOU Kai1,2, ZHAO Xiangyong3, ZHOU Zhiyong1, LIANG Ruihong1   

  1. 1. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Key Laboratory of Inorganic Functional Materials and Devices, Shanghai 200050, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Shanghai Normal University, Key Laboratory of Optoelectronic Material and Device, Shanghai 200234, China
  • Received:2023-04-06 Revised:2023-05-10 Published:2023-09-12 Online:2023-09-12
  • About author:KANG Wenshuo (1994-), male, PhD candidate. E-mail: kangwenshuo20@mails.ucas.ac.cn
  • Supported by:
    National Natural Science Foundation of China (51972321, U2241242); National Key Research and Development Program of China (2022YFF0709702); Pilot Technology for Chinese Academy of Sciences (XDA2203003)

摘要: BiFeO3-BaTiO3(BF-BT)陶瓷兼具高居里温度和优异的压电性能,在高温压电传感器和驱动器方面具有广泛的应用前景。BF-BT陶瓷在高温环境的电阻率较低,易造成器件高温性能恶化甚至失效。因此,改善BF-BT陶瓷电阻性能是其应用前必须要解决的关键问题。作为一种铁酸盐,其电阻率很难通过掺杂改性等常规方法进行改善。本研究首次在BF-BT陶瓷体系中发现一种电阻率异常升高的现象,并证实这与样品中的第二相Bi25FeO40有关。显微结构分析表明,该第二相具有一种特殊的层状周期性结构,其中每三排原子构成一个周期,而缺陷大多集中在其中一层原子当中。本研究采用传统固相法成功地制备出纯相的Bi25FeO40,将其以外添加剂的形式加入到0.7BF-0.3BT组分中,使基体组分在300 ℃的电阻率从1.03 MΩ·cm提高到4.33 MΩ·cm。此外,COMSOL仿真模拟的结果证实,通过引入该第二相可以将0.67BF-0.33BT组分电阻率提高一个数量级。根据能量过滤效应,这种特殊的结构具有高能垒,可以阻碍载流子迁移从而提高BF-BT陶瓷电阻率。本工作为改善BF-BT陶瓷电阻率提供了一种切实可行的方法。

关键词: 电阻率, 载流子迁移, BiFeO3-BaTiO3陶瓷, 仿真模拟

Abstract: BiFeO3-BaTiO3 (BF BT) ceramics possess both high Curie temperature and excellent piezoelectric properties, and have a quite wide application prospects in high-temperature piezoelectric sensors and actuators. However, the resistivity of BF-BT ceramics is too low during the high-temperature stage, which can lead to deterioration or even failure of the device's high-temperature performance. Therefore, improving the resistance performance of BF-BT ceramics is the key issue that must be addressed before its application. However, as a type of ferrite, it is difficult to improve resistivity through existing conventional methods, such as doping modification and optimizing sintering system. In this work, an abnormal increase in resistivity was first discovered in BF-BT ceramics, which was confirmed to be related to the second phase Bi25FeO40. Microstructural analysis shows that the second phase has a special layered periodic structure, in which every three rows of atoms constitute a period, and most defects are concentrated in one layer of atoms. The pure Bi25FeO40 was successfully synthesized using traditional solid phase method and introduced as an additive into the 0.7BF-0.3BT component, which can increase the resistivity at 300 ℃ from 1.03 MΩ·cm to 4.33 MΩ·cm. In addition, the results of COMSOL simulation confirm that introducing this second phase can increase the resistivity of the 0.67BF-0.33BT component by one order of magnitude. According to the energy filtering effect, this special structure with high energy barriers can prevent carrier migration and improve the resistivity of BF-BT ceramics. This work provides a practical and feasible method for improving the resistivity of BF-BT ceramics.

Key words: resistivity, carrier migration, BiFeO3-BaTiO3 ceramics, simulation confirm

中图分类号: