[1] YAO Z H, XU C B, LIU H X,et al. Greatly reduced leakage current and defect mechanism in atmosphere sintered BiFeO3-BaTiO3 high temperature piezoceramics. J. Mater. Sci-Mater. El., 2014, 25(11): 4975. [2] LEONTSEV S O, EITEL R E.Dielectric and piezoelectric properties in Mn-modified (1-x)BiFeO3-xBaTiO3 ceramics. J. Am. Ceram. Soc., 2009, 92(12): 2957. [3] WAN Y, LI Y, LI Q,et al. Microstructure, ferroelectric, piezoelectric, and ferromagnetic properties of Sc-modified BiFeO3-BaTiO3 multiferroic ceramics with MnO2 addition. J. Am. Ceram. Soc., 2014, 97(6): 1809. [4] LEE M H, KIM D J, PARK J S,et al. High-performance lead-free piezoceramics with high curie temperatures. Adv. Mater., 2015, 27(43): 6976. [5] ICHIRO FUJII S W. Structural and electrical characteristics of potential candidate lead-free BiFeO3-BaTiO3 piezoelectric ceramics. J. Appl. Phys., 2017, 122: 164105. [6] ZHANG S, YU F.Piezoelectric materials for high temperature sensors.J. Am. Ceram. Soc., 2011, 94(10): 3153. [7] SHI Y, DONG X, ZHAO K, et al. Potential high-temperature piezoelectric ceramics with remarkable performances enhanced by the second-order Jahn-Teller effect. ACS Applied Materials & Interfaces, 2021, 13(12): 14385. [8] KE Q, LOU X, WANG Y,et al. Oxygen-vacancy-related relaxation and scaling behaviors of Bi0.9La0.1Fe0.98Mg0.02O3 ferroelectric thin films. Physical Review B, 2010, 82(2): 024102. [9] VERWEIJ H.Thermodynamics and transport of ionic and electric defects in crystalline oxides.J. Am. Ceram. Soc., 1997, 80(9): 2175. [10] ZHENG T, WU J, XIAO D,et al. Recent development in lead-free perovskite piezoelectric bulk materials. Progress in Materials Science, 2018, 98: 552. [11] WANG T, JIN L, TIAN Y,et al. Microstructure and ferroelectric properties of Nb2O5-modified BiFeO3-BaTiO3 lead-free ceramics for energy storage. Mater. Lett., 2014, 137: 79. [12] QI X D, DHO J, TOMOV R,et al. Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3. Appl. Phys. Lett., 2005, 86(6): 062903. [13] WEFRING E T, EINARSRUD M A, GRANDE T.Electrical conductivity and thermopower of (1-x)BiFeO3-xBi0.5K0.5TiO3 (x = 0.1, 0.2) ceramics near the ferroelectric to paraelectric phase transition. Physical Chemistry Chemical Physics : PCCP, 2015, 17(14): 9420. [14] ZHU L-F, SONG A, ZHANG B-P,et al. Boosting energy storage performance of BiFeO3-based multilayer capacitors via enhancing ionic bonding and relaxor behavior. Journal of Materials Chemistry A, 2022, 10(13): 7382. [15] ZENG F, FAN G, HAO M,et al. Conductive property of BiFeO3-BaTiO3 ferroelectric ceramics with high Curie temperature. Journal of Alloys and Compounds, 2020, 831: 154853. [16] VALANT M.Peculiarities of a solid-state synthesis of multiferroic polycrystalline BiFeO3.Chem. Mater., 2007, 19(22): 5431. [17] SOSNOWSKA I, NEUMAIER T P, STEICHELE E.Spiral magnetic ordering in bismuth ferrite.Journal of Physics C: Solid State Physics, 1982, 15(23): 4835. [18] PALAI R, KATIYAR R S, SCHMID H,et al. β phase and γ-β metal-insulator transition in multiferroic BiFeO3. Physical Review B, 2008, 77(1): 014110. [19] GHEORGHIU F P, IANCULESCU A, POSTOLACHE P,et al. Preparation and properties of (1-x)BiFeO3-xBaTiO3 multiferroic ceramics. Journal of Alloys and Compounds, 2010, 506(2): 862. [20] WANG G, LI J, ZHANG X,et al. Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity. Energ. Environ. Sci., 2019, 12(2): 582. [21] MORRISON F D, SINCLAIR D C, WEST A R.Characterization of lanthanum-doped barium titanate ceramics using impedance spectroscopy.J. Am. Ceram. Soc., 2001, 84(3): 531. [22] SUNDARAKANNAN B, KAKIMOTO K, OHSATO H.Frequency and temperature dependent dielectric and conductivity behavior of KNbO3 ceramics.J. Appl. Phys., 2003, 94(8): 5182. [23] IRVINE J T S. Electroceramics characterization by impedance spectroscopy.Adv. Mater., 1990, 2(3): 132. [24] JEBARI H, TAHIRI N, BOUJNAH M,et al. Structural, optical, dielectric, and magnetic properties of iron-sillenite Bi25FeO40. Applied Physics A, 2022, 128(9): 842. [25] JIANG T, WANG Y, GUO Z,et al. Bi25FeO40/Bi2O2CO3 piezoelectric catalyst with built-in electric fields that was prepared via photochemical self-etching of Bi25FeO40 for 4-chlorophenol degradation. Journal of Cleaner Production, 2022, 341: 130908. [26] SK K.Electrical anisotropy and plausible explanation for dielectric anomaly of Bi4Ti3O12 single crystal.Materials Research Bulletin, 1996. [27] AUCIELLO O, KRAUSS A R, IM J,et al. Studies of film growth processes and surface structural characterization of ferroelectric memory-compatible SrBi2Ta2O9 layered perovskites via in situ, real-time ion-beam analysis. Appl. Phys. Lett., 1996, 69(18): 2671. [28] WASER R.Grain boundaries in dielectric and mixed-conducting ceramics.Acta Mater., 2000, 48(4): 797. [29] YOON S H, RANDALL C A, HUR K H.Influence of grain size on impedance spectra and resistance degradation behavior in acceptor (Mg)-doped BaTiO3 ceramics.J. Am. Ceram. Soc., 2009, 92(12): 2944. [30] REISS G, VANCEA J, HOFFMANN H.Grain-boundary resistance in polycrystalline metals.Physical Review Letters, 1986, 56(19): 2100. [31] HAILE S M, WEST D L, CAMPBELL J.The role of microstructure and processing on the proton conducting properties of gadolinium-doped barium cerate.Journal of Materials Research, 1998, 13(6): 1576. [32] LUO T.Maxwell-Wagner Polarization Characteristics in BaTiO3 PVDF Nanocomposites. High Voltage Engineering, 2019. [33] ZHANG C, CHEN Y, LI X,et al. Effect of LiF addition on sintering behavior and dielectric breakdown mechanism of MgO-based microwave dielectric ceramics. J. Materiomics, 2021, 7(3): 478. [34] ABRANTES J C C. Applicability of the brick layer model to describe the grain boundary properties of strontium titanate ceramics.J. Eur. Ceram. Soc., 2000, 20(10): 1603. [35] BENNETT N S, BYRNE D, COWLEY A.Enhanced Seebeck coefficient in silicon nanowires containing dislocations.Appl. Phys. Lett., 2015, 107(1): 013903. [36] SINGH H, KUMAR A, YADAV K L.Structural, dielectric, magnetic, magnetodielectric and impedance spectroscopic studies of multiferroic BiFeO3-BaTiO3 ceramics.Materials Science and Engineering: B, 2011, 176(7): 540. [37] LI Q, WEI J, TU T,et al. Remarkable piezoelectricity and stable high-temperature dielectric properties of quenched BiFeO3-BaTiO3 ceramics. J. Am. Ceram. Soc., 2017, 100(12): 5573. [38] WANG L, LIANG R, ZHOU Z,et al. Electrical conduction mechanisms and effect of atmosphere annealing on the electrical properties of BiFeO3-BaTiO3 ceramics. J. Eur. Ceram. Soc., 2019, 39(15): 4727. [39] MURAKAMI S, AHMED N T A F, WANG D,et al. Optimising dopants and properties in BiMeO3(Me = Al, Ga, Sc, Y, Mg2/3Nb1/3, Zn2/3Nb1/3, Zn1/2Ti1/2) lead-free BaTiO3-BiFeO3 based ceramics for actuator applications. J. Eur. Ceram. Soc., 2018, 38(12): 4220. [40] MURAKAMI S, WANG D, MOSTAED A,et al. High strain (0.4%) Bi(Mg2/3Nb1/3)O3-BaTiO3-BiFeO3 lead-free piezoelectric ceramics and multilayers. J. Am. Ceram. Soc., 2018, 101(12): 5428. |