无机材料学报 ›› 2023, Vol. 38 ›› Issue (2): 184-192.DOI: 10.15541/jim20220553 CSTR: 32189.14.10.15541/jim20220553
所属专题: 【结构材料】超高温结构陶瓷(202409)
孙敬伟1(), 王洪磊1(
), 孙楚函1, 周新贵1, 纪小宇1,2(
)
收稿日期:
2022-09-22
修回日期:
2022-11-07
出版日期:
2023-02-20
网络出版日期:
2022-11-16
通讯作者:
王洪磊, 副教授. E-mail: honglei.wang@163.com;作者简介:
孙敬伟(2000-), 男, 硕士研究生. E-mail: sunjingwei0120@163.com
基金资助:
SUN Jingwei1(), WANG Honglei1(
), SUN Chuhan1, ZHOU Xingui1, JI Xiaoyu1,2(
)
Received:
2022-09-22
Revised:
2022-11-07
Published:
2023-02-20
Online:
2022-11-16
Contact:
WANG Honglei, associate professor. E-mail: honglei.wang@163.com;About author:
SUN Jingwei (2000-), male, Master candidate. E-mail: sunjingwei0120@163.com
Supported by:
摘要:
先驱体转化法是制备耐超高温陶瓷和粉体的有效方法之一, 但原料种类对先驱体交联固化程度和陶瓷产率的影响鲜有报道。本研究分别采用两种碳源与聚钽氧烷(PTO)合成了TaC先驱体, 研究了碳源种类、裂解温度和钽碳比例等因素对先驱体转化法制备TaC陶瓷粉体微观结构及性能的影响。结果表明, 含C=C的PF-3树脂可以有效促进PTO的交联固化, 提高先驱体的陶瓷产率。当钽碳质量比分别为PTO : PF-3树脂=1 : 0.25和PTO : 2402树脂=1 : 0.4时, 在1400 ℃下裂解获得的TaC陶瓷粉体不含残余Ta2O5, 陶瓷产率分别为54.02%和49.64%, 晶粒尺寸分别为47.2和60.9 nm。PF-3树脂在提高陶瓷产率的同时能够减小晶粒尺寸, 但对粉体纯度与粒度影响较小。不同碳源制备的TaC陶瓷粉体纯度分别为96.50%和97.36%, 中位径分别为131和129 nm。
中图分类号:
孙敬伟, 王洪磊, 孙楚函, 周新贵, 纪小宇. 碳源对先驱体转化法制备TaC陶瓷粉体微观结构及性能影响[J]. 无机材料学报, 2023, 38(2): 184-192.
SUN Jingwei, WANG Honglei, SUN Chuhan, ZHOU Xingui, JI Xiaoyu. Effects of Carbon Sources on Structure and Properties of TaC Ceramic Powder Prepared by Polymer Derived Ceramics[J]. Journal of Inorganic Materials, 2023, 38(2): 184-192.
图3 不同钽碳源及交联产物热重曲线
Fig. 3 TG curves of different tantalum carbon sources and crosslinked products (a) PTO, PF-3, 2402 Resin, PTC1-25 (220 ℃), PTC2-40(220 ℃); (b) PTC1-25 (1000 ℃); (c) PTC2-40(1000 ℃) Colorful figures are available on website
图4 不同裂解温度及不同钽碳比例所得陶瓷产物的XRD图谱
Fig. 4 XRD patterns of ceramic products obtained at different pyrolysis temperatures and tantalum/carbon ratios (a) PTC1-25, 800~1500 ℃; (b) PTC1-(10~40), 1400 ℃, 2 h; (c) PTC2-(20~45), 1400 ℃ 2 h
Sample | L/nm | Sample | L/nm |
---|---|---|---|
PTC1-10 | 62.5 | PTC2-20 | 71.3 |
PTC1-15 | 73.9 | PTC2-30 | 67.9 |
PTC1-20 | 67.2 | PTC2-35 | 66.0 |
PTC1-25 | 47.2 | PTC2-40 | 60.9 |
PTC1-30 | 45.5 | PTC2-45 | 54.8 |
PTC1-35 | 39.7 | ||
PTC1-40 | 37.5 |
表1 不同碳源比例所得TaC粉体的平均晶粒尺寸
Table 1 Average grain size of TaC powder with different carbon source ratios
Sample | L/nm | Sample | L/nm |
---|---|---|---|
PTC1-10 | 62.5 | PTC2-20 | 71.3 |
PTC1-15 | 73.9 | PTC2-30 | 67.9 |
PTC1-20 | 67.2 | PTC2-35 | 66.0 |
PTC1-25 | 47.2 | PTC2-40 | 60.9 |
PTC1-30 | 45.5 | PTC2-45 | 54.8 |
PTC1-35 | 39.7 | ||
PTC1-40 | 37.5 |
Temperature/℃ | ωD/cm-1 | ωG/cm-1 | |
---|---|---|---|
1200 | 1313 | 1576 | 2.045 |
1300 | 1315 | 1579 | 1.641 |
1400 | 1313 | 1580 | 1.605 |
表2 不同裂解温度PTC1-25产物D、G峰中心位置及${{I}_{\mathbf{D}}}/{{I}_{\mathbf{G}}}$比值
Table 2 Center positions of D and G peaks of PTC1-25 products obtained at different pyrolysis temperatures and ratios of ${{I}_{\mathbf{D}}}/{{I}_{\mathbf{G}}}$
Temperature/℃ | ωD/cm-1 | ωG/cm-1 | |
---|---|---|---|
1200 | 1313 | 1576 | 2.045 |
1300 | 1315 | 1579 | 1.641 |
1400 | 1313 | 1580 | 1.605 |
Sample | Ta/% | C/% | O/% | Cfree/% |
---|---|---|---|---|
PTC1-25 | 91.72 | 5.02 | 1.31 | 2.19 |
PTC2-40 | 92.14 | 6.42 | 0.89 | 1.75 |
表3 最佳钽碳比例所得TaC粉体中元素的质量含量
Table 3 Elements mass contents of TaC powders obtained at optimal tantalum/carbon ratio
Sample | Ta/% | C/% | O/% | Cfree/% |
---|---|---|---|---|
PTC1-25 | 91.72 | 5.02 | 1.31 | 2.19 |
PTC2-40 | 92.14 | 6.42 | 0.89 | 1.75 |
图6 最佳钽碳质量比所得TaC粉体粒度分布直方图
Fig. 6 Histograms of the granularity distributions of TaC powders obtained at optimal tantalum/carbon mass ratios (a) PTC1-25; (b) PTC2-40
图7 不同钽碳质量比所得TaC粉体的SEM照片
Fig. 7 SEM images of TaC powders obtained at different tantalum/carbon mass ratios (a) PTO; (b) PTC1-25; (c) PTC1-40; (d) PTC2-40; (e) PTC2-45
[1] | 周亦人, 沈自才, 齐振一, 等. 中国航天科技发展对高性能材料的需求. 材料工程, 2021, 49(11): 41. |
[2] |
PEREPEZKO J H. The hotter the engine, the better. Science, 2009, 326(5956): 1068.
DOI URL |
[3] |
FAHRENHOLTZ W G, HILMAS G E. Ultra-high temperature ceramics: materials for extreme environments. Scripta Materialia, 2017, 129: 94.
DOI URL |
[4] |
PADTURE N P. Advanced structural ceramics in aerospace propulsion. Nature Materials, 2016, 15 (8): 804.
DOI PMID |
[5] | JAKUBOWICZ J, ADAMEK G, SOPATA M, et al. Microstructure and electrochemical properties of refractory nanocrystalline tantalum-based alloys. International Journal of Electrochemical Science, 2018, 13(2): 1956. |
[6] | 王世界, 尹艺程, 邱鑫, 等. 超高温多孔陶瓷的制备、性能及应用研究进展. 材料导报, 2022, 36(12): 57. |
[7] |
XIAO P, ZHU Y L, WANG S, et al. Research Progress on the Preparation and Characterization of Ultra Refractory TaxHf1-xC solid solution ceramics. Journal of Inorganic Materials, 2021, 36(7): 685.
DOI URL |
[8] | WANG S L, MA L, MEAD J L, et al. Catalyst-free synthesis and mechanical characterization of TaC nanowires. Science China (Physics, Mechanics & Astronomy), 2021, 64(5): 47. |
[9] | 爨炳辰. 先驱体转化法制备碳化钽陶瓷研究. 长沙: 国防科技大学硕士学位论文, 2017. |
[10] | LU Y, CHEN F H, AN P F, et al. Polymer precursor synthesis of TaC-SiC ultrahigh temperature ceramic nanocomposites. Royal Society of Chemistry, 2016, 6(91): 88770. |
[11] |
PU H, NIU Y R, ZHENG, X B, et al. Ablation of vacuum plasma sprayed TaC-based composite coatings. Ceramics International, 2015, 41(9): 11387.
DOI URL |
[12] |
NIU Y R, PU H, HUANG L P, et al. Microstructure and ablation property of TaC-SiC composite coatings. In Key Engineering Materials, Trans Tech Publications Ltd, 2016, 697: 535.
DOI URL |
[13] |
PENG J H, TIKHONOV E. Vacancy on Structures, Mechanical and Electronic Properties of Ternary Hf-Ta-C system: a first-principles study. Journal of Inorganic Materials, 2022, 37(1): 51.
DOI |
[14] |
WALTER L, FABIO S. Ti(C, N)-based cermets: critical review of achievements and recent developments. Solid State Phenom, 2018, 274: 53.
DOI URL |
[15] |
LI Z J, ZHU C L, CAI B J, et al. Effect of TiB2 content on the microstructure and mechanical properties of Ti(C, N)-TiB2-FeCoCrNiAl high-entropy alloys composite cermets. Journal of the Ceramic Society of Japan, 2020, 128: 66.
DOI URL |
[16] |
SHANKAR E, PRABU S B, K. Effect of nano-TiB2 addition on the microstructure, mechanical properties and machining performance of TiCN cermet. Journal of the Australian Ceramic Society, 2018, 54: 565.
DOI URL |
[17] |
PAN R Q, CHEN G Q, YU X M, et al. Densification, microstructure and mechanical properties of Ta4HfC5-based ceramics obtained from synthesized nanoscale powder. Journal of the European Ceramic Society, 2021, 41(4): 2247.
DOI URL |
[18] |
XU X Y, ZHENG Y, ZHAO Y J, et al. Influence of TaC content on microstructure and mechanical performance of Ti(C,N)-based cermets fabricated by mechanical activation and subsequent in situ carbothermal reduction. Ceramics International, 2022, 48(3): 3826.
DOI URL |
[19] |
ZHANG J, WANG S, LI W, et al. Understanding the oxidation behavior of Ta-Hf-C ternary ceramics at high temperature. Corrosion Science, 2020, 164: 108348.
DOI URL |
[20] |
FANG C Q, HUANG B Y, YANG X, et al. Effects of LaB6 on composition, microstructure and ablation property of the HfC- TaC-SiC doped C/C composites prepared by precursor infiltration and pyrolysis. Corrosion Science, 2021, 184: 109347.
DOI URL |
[21] |
WANG B Z, LI D X, YANG Z H, et al. Study on oxidation resistance and oxidative damage mechanism of SiBCN-Ta4HfC5 composite ceramics. Corrosion Science, 2022, 197: 110049.
DOI URL |
[22] |
LU Y, ZHU S Y, WANG X Y, et al. High temperature tribological behavior of polymer-derived Ta4HfC5 nanoceramics. Tribology International, 2021, 156: 106859.
DOI URL |
[23] |
ZHAO X R, ZHANG M X, ZUO D W, et al. Ti(C, N)-based cermet with different TaC/(TaC+WC) weight ratio by in-situ reactive hot pressing: microstructure and mechanical properties. Materials Today Communications, 2020, 25: 101661.
DOI URL |
[24] | COLOMBO P, MERA G, RIEDEL R, et al. Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. Journal of the American Ceramic Society, 2010, 93(7): 1805. |
[25] |
CAI T, QIU W F, ZHAO T, et al. Polymer precursor-derived HfCSiC ultrahigh-temperature ceramic nanocomposites. Journal of the American Ceramic Society, 2018, 101(1): 20.
DOI URL |
[26] |
Li F, Lu Y, Wang X G, et al. Liquid precursor-derived high- entropy carbide nanopowders. Ceramics International, 2019, 45(17): 22437.
DOI URL |
[27] |
SUN Y N, YE L, ZHAO W Y, et al. Synthesis of high entropy carbide nano powders via liquid polymer precursor route. Journal of Inorganic Materials, 2021, 36(4): 393.
DOI URL |
[28] |
CHENG J, DONG Z J, ZHU H, et al. Synthesis and ceramisation of organometallic precursors for Ta4HfC5 and TaHfC2 ultra-fine powders through a facile one-pot reaction. Journal of Alloys and Compounds, 2022, 898: 162989.
DOI URL |
[29] |
LU Y, SUN Y A, ZHANG T Z, et al. Polymer-derived Ta4HfC5 nanoscale ultrahigh-temperature ceramics: synthesis, microstructure and properties. Journal of the European Ceramic Society, 2019, 39(2/3): 205.
DOI URL |
[30] |
JIANG J M, WANG S, LI W. Preparation and characterization of ultrahigh-temperature ternary ceramics Ta4HfC5. Journal of the American Ceramic Society, 2016, 99(10): 3198.
DOI URL |
[31] |
ZHANG J, WANG S, LI W. Nano-scale 1TaC-3HfC solid solution powder synthesized using a solvothermal method and its densification. Ceramics International, 2019, 45(1): 1455.
DOI URL |
[32] |
SUN Y A, YANG C M, LU Y, et al. Transformation of metallic polymer precursor into nanosized HfTaC2 ceramics. Ceramics International, 2020, 46(5): 6022.
DOI URL |
[33] |
PIMENTA M A, DRESSELHAUS G, DRESSELHAUS M S, et al. Studying disorder in graphite-based systems by Raman spectroscopy. Physical Chemistry Chemical Physics, 2007, 9: 1276.
PMID |
[34] |
FERREIRA MARTINS E H, MOUTINHO V O, STAVALE F, et al. Evolution of the Raman spectra from single-, few-, and many- layer graphene with increasing disorder. Physical Review B, 2010, 82: 125429.
DOI URL |
[35] | 郭伟. 超细碳化钽粉末的制备方法. 中国: CN102134073B. 2012-11-14. |
[36] |
GHAFFARI S, FAGHIHI-SANI M, GOLESTANI-FARD F, et al. Pressureless sintering of Ta0.8Hf0.2C UHTC in the presence of MoSi2. Ceramics International, 2013, 39: 1985.
DOI URL |
[37] |
OMAR C, SALVATORE G, NASR IN A, et al. Sintering behaviour, solid solution formation and characterization of TaC, HfC and TaC-HfC fabricated by spark plasma sintering. Journal of the European Ceramic Society, 2016, 36: 1539.
DOI URL |
[38] | 张德尧. 采用废钽料制备细颗粒TaC粉. 稀有金属快报, 2000, 8: 13. |
[39] |
PATSERA E I, KURBATKINA V V, LEVASHOV E A, et al. Research into the possibility of producing single-phase tantalum- hafnium carbide by SHS. Russian Journal of Non-Ferrous Metals, 2018, 59(5): 576.
DOI URL |
[40] |
KURBATKINA V, PATSERA E, LEVASHOV E, et al. Self- propagating high-temperature synthesis of single-phase binary tantalum-hafnium carbide (Ta, Hf)C and its consolidation by hot pressing and spark plasma sintering. Ceramics International, 2018, 44(4): 4320.
DOI URL |
[1] | 武向权, 滕家琛, 季祥旭, 郝禹博, 张忠明, 徐春杰. 织构化多孔Al2O3-SiO2复合陶瓷片-球混合浆料特性及光强分布仿真[J]. 无机材料学报, 2024, 39(7): 769-778. |
[2] | 刘建, 王凌坤, 许保亮, 赵倩, 王耀萱, 丁艺, 张胜泰, 段涛. 熔盐法低温合成掺钕ZrSiO4陶瓷的物相演变和化学稳定性[J]. 无机材料学报, 2023, 38(8): 910-916. |
[3] | 杨勇, 郭啸天, 唐杰, 常浩天, 黄政仁, 胡秀兰. 非氧化物陶瓷光固化增材制造研究进展及展望[J]. 无机材料学报, 2022, 37(3): 267-277. |
[4] | 周港怀, 刘耀, 石原, 刘绍军. 活性氧化铝催化剂载体的光固化浆料制备与成型[J]. 无机材料学报, 2022, 37(3): 297-302. |
[5] | 王亚宁, 张玉琪, 宋索成, 陈若梦, 刘亚雄, 段玉岗. 氧化锆陶瓷扫描光固化成形与脱脂烧结工艺研究[J]. 无机材料学报, 2022, 37(3): 303-309. |
[6] | 朱俊逸, 张成, 罗忠强, 曹继伟, 刘志远, 王沛, 刘长勇, 陈张伟. 脱脂工艺对光固化3D打印堇青石陶瓷性能的影响[J]. 无机材料学报, 2022, 37(3): 317-324. |
[7] | 李乔磊, 顾玥, 于雪华, 张朝威, 邹明科, 梁静静, 李金国. 烧结温度对3D打印硅基陶瓷型芯表面形貌及粗糙度的影响[J]. 无机材料学报, 2022, 37(3): 325-332. |
[8] | 刘国仟, 闫长海, 张可强, 金华, 何汝杰. 立体光刻增材制造中固含量对Al2O3陶瓷性能的影响[J]. 无机材料学报, 2022, 37(3): 353-360. |
[9] | 王袁杰, 裴学良, 李好义, 徐鑫, 何流, 黄政仁, 黄庆. 自由基引发活性聚碳硅烷交联及其在制备SiC纤维中的应用[J]. 无机材料学报, 2021, 36(9): 967-973. |
[10] | 肖鹏, 祝玉林, 王松, 余艺平, 李浩. 超高熔点TaxHf1-xC固溶陶瓷的制备工艺与性能研究进展[J]. 无机材料学报, 2021, 36(7): 685-694. |
[11] | 段涛, 丁艺, 罗世淋, 张胜泰, 刘建. 回归自然: 人造岩石固化核素的思考与进展[J]. 无机材料学报, 2021, 36(1): 25-35. |
[12] | 刘雅兰, 柴之芳, 石伟群. 干法后处理含盐废物陶瓷固化技术研究进展[J]. 无机材料学报, 2020, 35(3): 271-276. |
[13] | 李兴邦,仲鹤,张景贤,段于森,江东亮. 粉体性质对树脂基氧化锆光固化浆料流变行为的影响[J]. 无机材料学报, 2020, 35(2): 231-235. |
[14] | 孙亚平, 王洪龙, 褚健, 王绪, 潘社奇, 张铭. 陶瓷固化体的浸出行为及其机理[J]. 无机材料学报, 2019, 34(5): 461-468. |
[15] | 吴青青, 王震, 丁奇, 倪德伟, 阚艳梅, 董绍明. 基于固体聚硅氧烷的前驱体浸渍裂解法(PIP)制备C/SiOC复合材料及其微结构与力学性能研究[J]. 无机材料学报, 2019, 34(12): 1349-1356. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||