无机材料学报 ›› 2022, Vol. 37 ›› Issue (9): 976-982.DOI: 10.15541/jim20210718 CSTR: 32189.14.10.15541/jim20210718
所属专题: 【信息功能】纪念殷之文先生诞辰105周年虚拟学术专辑
陈永虹1(), 林志盛1, 张子山1, 陈本夏1, 王根水2(
)
收稿日期:
2021-11-22
修回日期:
2021-12-23
出版日期:
2022-09-20
网络出版日期:
2022-06-16
通讯作者:
王根水, 研究员. E-mail: genshuiwang@mail.sic.ac.cn作者简介:
陈永虹(1981-), 男, 工程师. E-mail: chenyh@torch.cn
基金资助:
CHEN Yonghong1(), LIN Zhisheng1, ZHANG Zishan1, CHEN Benxia1, WANG Genshui2(
)
Received:
2021-11-22
Revised:
2021-12-23
Published:
2022-09-20
Online:
2022-06-16
Contact:
WANG Genshui, professor. E-mail: genshuiwang@mail.sic.ac.cnAbout author:
CHEN Yonghong (1981-), male, engineer. E-mail: chenyh@torch.cn
Supported by:
摘要:
工业级脉冲储能多层瓷介电容器(MLCC)是现阶段国内研制和生产电子启动装置的重要元器件, 针对国内主要有机薄膜电容器尺寸大、寿命短、可靠性较低的不足, 本研究采用传统固相反应法, 制备了SrTiO3和CaTiO3基的脉冲储能介质陶瓷材料, 研究了微量助烧剂掺杂, 以及Sr2+/Ca2+相互掺杂对陶瓷材料的介电性能的影响, 并进一步制备和研究了以(Sr,Ca)TiO3为基体MLCC性能。实验结果表明: 通过加入质量分数1.0%的助烧剂, 引入微量Bi3+ 可取代Sr2+, 提高了SrTiO3材料的介电常数, 而Bi3+对CaTiO3基材料的介电性能无明显影响; Mn元素有效抑制高温烧结中Ti4+的还原, 降低介电损耗; 加入助烧剂有效降低瓷粉的烧结温度, 提高材料的致密性。(SrxCa1-x)TiO3体系的MLCC可保持较高的介电常数和较低的介电损耗, 当 x=0.4 时, 其介电损耗tanδ=1.8×10-4, 击穿强度为59.38 V/μm, 高低温放电电流变化率为±7%, 放电稳定, 在常温和高温(125 ℃)下经1000次循环充放电实验均未失效, 是一种在不同电场强度下具有相对较优的容量稳定性以及较高可靠性的脉冲特性(Sr,Ca)TiO3基电容器陶瓷介质材料。
中图分类号:
陈永虹, 林志盛, 张子山, 陈本夏, 王根水. 改性(Sr,Ca)TiO3基储能陶瓷介电及MLCC性能研究[J]. 无机材料学报, 2022, 37(9): 976-982.
CHEN Yonghong, LIN Zhisheng, ZHANG Zishan, CHEN Benxia, WANG Genshui. Dielectric and MLCC Property of Modified (Sr,Ca)TiO3 Based Energy Storage Ceramic[J]. Journal of Inorganic Materials, 2022, 37(9): 976-982.
Specifications | L/mm | W/mm | Tmax/mm | t/mm |
---|---|---|---|---|
6878 | 17.30±0.80 | 19.80±0.80 | 7.80 | 1.10±0.70 |
表1 6878多层瓷介电容器外形尺寸
Table 1 Overall dimensions of 6878 multilayer ceramic capacitor
Specifications | L/mm | W/mm | Tmax/mm | t/mm |
---|---|---|---|---|
6878 | 17.30±0.80 | 19.80±0.80 | 7.80 | 1.10±0.70 |
Sample | ε | tanδ/(×10-4) |
---|---|---|
SrTiO3 | 262 | 6.4 |
CaTiO3 | 159 | 6.0 |
SrTiO3+dopant | 388 | 34.7 |
CaTiO3+dopant | 157 | 4.6 |
表2 不同配方样品的基本电性能
Table 2 Electrical properties of different samples
Sample | ε | tanδ/(×10-4) |
---|---|---|
SrTiO3 | 262 | 6.4 |
CaTiO3 | 159 | 6.0 |
SrTiO3+dopant | 388 | 34.7 |
CaTiO3+dopant | 157 | 4.6 |
Sample | ε | tanδ/(×10-4) |
---|---|---|
x=1 | 388 | 34.7 |
x=0.9 | 348 | 10.5 |
x=0.8 | 303 | 12.8 |
x=0.7 | 298 | 9.4 |
x=0.6 | 299 | 8.7 |
x=0.5 | 282 | 3.7 |
x=0.4 | 249 | 3.0 |
x=0.3 | 218 | 2.6 |
x=0.2 | 202 | 3.5 |
x=0.1 | 181 | 3.3 |
x=0 | 157 | 4.6 |
表3 不同Sr/Ca比(SrxCa1-x)TiO3的基本电性能
Table 3 Electrical properties of (SrxCa1-x)TiO3 with different Sr/Ca ratios
Sample | ε | tanδ/(×10-4) |
---|---|---|
x=1 | 388 | 34.7 |
x=0.9 | 348 | 10.5 |
x=0.8 | 303 | 12.8 |
x=0.7 | 298 | 9.4 |
x=0.6 | 299 | 8.7 |
x=0.5 | 282 | 3.7 |
x=0.4 | 249 | 3.0 |
x=0.3 | 218 | 2.6 |
x=0.2 | 202 | 3.5 |
x=0.1 | 181 | 3.3 |
x=0 | 157 | 4.6 |
Samples | C/nF | tanδ/ (×10-4) | TCC/(×10-6, K-1) | BDV/V | |
---|---|---|---|---|---|
-55 ℃ | 125 ℃ | ||||
x=0.4 | 100.87 | 1.8 | -2464.4 | -1963.2 | 6650 |
x=0.5 | 100.29 | 2.3 | -3118.2 | -2031.6 | 5690 |
表4 不同Sr/Ca比瓷介粉料制备MLCC的基本电性能
Table 4 Electrical properties of MLCC prepared from ceramic materials with different Sr/Ca ratios
Samples | C/nF | tanδ/ (×10-4) | TCC/(×10-6, K-1) | BDV/V | |
---|---|---|---|---|---|
-55 ℃ | 125 ℃ | ||||
x=0.4 | 100.87 | 1.8 | -2464.4 | -1963.2 | 6650 |
x=0.5 | 100.29 | 2.3 | -3118.2 | -2031.6 | 5690 |
T/℃ Sample | -45 | -35 | 25 | 85 | 125 | |
---|---|---|---|---|---|---|
x=0.4 | Current/A | 4303 | 4215 | 4039 | 3864 | 3732 |
Rate/% | 6.5 | 4.4 | - | -4.3 | -7.6 | |
x=0.5 | Current/A | 4445 | 4445 | 4193 | 4025 | 3774 |
Rate/% | 6.0 | 6.0 | - | -4.0 | -10.0 | |
Commercial MLCC (a) | Current/A | - | - | 3500 | - | - |
表5 不同Sr/Ca比瓷介粉料制备MLCC的放电电流及其与商用MLCC的对比
Table 5 Discharge current of MLCC prepared from ceramic powder with different Sr/Ca ratios and comparison with commercial MLCC
T/℃ Sample | -45 | -35 | 25 | 85 | 125 | |
---|---|---|---|---|---|---|
x=0.4 | Current/A | 4303 | 4215 | 4039 | 3864 | 3732 |
Rate/% | 6.5 | 4.4 | - | -4.3 | -7.6 | |
x=0.5 | Current/A | 4445 | 4445 | 4193 | 4025 | 3774 |
Rate/% | 6.0 | 6.0 | - | -4.0 | -10.0 | |
Commercial MLCC (a) | Current/A | - | - | 3500 | - | - |
图5 不同Sr/Ca比瓷介粉料制备MLCC的电场与容量变化关系曲线(a)及寿命实验(b)
Fig. 5 Relationship between electric field and capacity change (a), life test (b) of MLCC prepared from ceramic powder with different Sr/Ca ratios
图6 (Sr0.4Ca0.6)TiO3瓷粉制备的MLCC的SEM照片(a, b)和DPA分析(c, d)
Fig. 6 SEM images (a, b) and DPA analysis (c, d) of MLCC prepared by (Sr0.4Ca0.6)TiO3 ceramic powder
Sample | Voltage/V | T/℃ | Discharge times | Result |
---|---|---|---|---|
x=0.4 | 4000 | 25 | 1000 | No failure |
125 | No failure |
表6 (Sr0.4Ca0.6)TiO3基瓷粉制备的MLCC循环充放电试验
Table 6 Cyclic discharge test of MLCC prepared by (Sr0.4Ca0.6)TiO3 based ceramic powder
Sample | Voltage/V | T/℃ | Discharge times | Result |
---|---|---|---|---|
x=0.4 | 4000 | 25 | 1000 | No failure |
125 | No failure |
[1] | YAO K, ZHOU C R, WANG J, et al. A new strategy to realize high energy storage properties and ultrafast discharge speed in Sr0.7Bi0.2TiO3-based relaxor ferroelectric ceramic. Journal of Alloys and Compounds, 2021, 883: 160855. |
[2] | ZHANG H B, WEI T, ZHANG Q, et al. A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors. Journal of Materials Chemistry C, 2020, 8: 16648-16667. |
[3] |
GULLY J H. Power supply technology for electric guns. IEEE Transactions on Magnetics, 1991, 27(1): 329-334.
DOI URL |
[4] |
PALNEEDI H, PEDDIGARI M, HWANG G T, et al. High- performance dielectric ceramic films for energy storage capacitors: progress and outlook. Advanced Functional Materials, 2018, 28(42): 1803665.
DOI URL |
[5] | JIANG Z H, YANG H C, CAO L, et al. Enhanced breakdown strength and energy storage density of lead-free Bi0.5Na0.5TiO3- based ceramic by reducing the oxygen vacancy concentration. Chemical Engineering Journal, 2021, 414: 128921. |
[6] | GU Y T, LIU H B, MA H H, et al. Research progress of dielectric materials for energy storage. Insulating Material, 2015, 48: 1-7. |
[7] | OGIHARA H, RANDALL C A, MCKINSTRY S T. High-energy density capacitors utilizing 0.7BaTiO3-0.3BiScO3 ceramics. Journal of the American Ceramic Society, 2009, 92: 1719-1724. |
[8] | HUANG L, NI X F, LIN H, et al. Research progress on preparation technology of high-performance barium titanate ceramic. Materials Review, 2015, 29: 219-224. |
[9] | SHEN Z Y, LI Y M, HU Q G, et al. Dielectric properties of B-site charge balanced Dy-doped SrTiO3 ceramics for energy storage. Journal of Electroceramics, 2015, 34: 236-240. |
[10] | HU Q G, SHEN Z U, LI Y M, et al. Enhanced energy storage properties of dysprosium doped strontium titanate ceramics. Ceramics International, 2014, 40: 2529-2534. |
[11] | ZHOU H Y, ZHU X N, REN G R, et al. Enhanced energy storage density and its variation tendency in CaZrxTi1-xO3 ceramics. Journal of Alloys and Compounds, 2016, 688: 687-691. |
[12] | ZHOU H Y, LIU X Q, ZHU X L. CaTiO3 linear dielectric ceramics with greatly enhanced dielectric strength and energy storage density. Journal of the American Ceramic Society, 2018, 101: 1999-2008. |
[13] | ZHANG G F, LIU H X, YAO Z H, et al. Effects of Ca doping on the energy storage properties of (Sr, Ca)TiO3 paraelectric ceramics, Journal of Materials Science: Materials in Electronics, 2015, 26: 2726-2732. |
[14] | WANG W, PU Y P, GUO X, et al. Enhanced energy storage and fast charge discharge capability in Ca0.5Sr0.5TiO3-based linear dielectric ceramic. Journal of Alloys and Compounds, 2020, 817: 152695. |
[15] | MITSUI T, WESTPHAL W. Dielectric and X-ray studies of CaxBa1-xTiO3 and CaxSr1-xTiO3. Physical Review, 1961, 124: 1354-1359. |
[16] | ZHANG L, YAO Z H, LANGAN M T, et al. Effect of oxygen treatment on structure and electrical properties of Mn-doped Ca0.6Sr0.4TiO3 ceramics. Journal of the European Ceramic Society, 2018, 38: 2534-2540. |
[17] | DONG G X, MA S W, DU J, et al. Dielectric properties and energy storage density in ZnO-doped Ba0.3Sr0.7TiO3 ceramic. Ceramics International, 2009, 35: 2069-2075. |
[18] | HSIANG H I, HSI C S, HUANG C C, et al. Sintering behavior an dielectric properties of BaTiO3 ceramics with glass addition for inteal capacitor of LTCC. Journal of Alloys and Compound, 2008, 459: 307-310. |
[19] | PU Y P, WANG W, GUO X, et al. Enhancing the energy storage properties of Ca0.5Sr0.5TiO3-based lead-free linear dielectric ceramics with excellent stability through regulating grain boundary defects. Journal of Materials Chemistry C, 2019, 7: 14384-14393. |
[20] | WU Z H, CAO M H, YU H T, et al. The microstructures and dielectric properties of xSrZrO3-(1-x)SrTiO3 ceramics. Journal of Electroceramics, 2008, 21: 210-213. |
[21] | HUANG X C, HAO H, ZHANG S J, et al. Structure and dielectric properties of BaTiO3-BiYO3 perovskite solid solutions. Journal of the American Ceramic Society, 2014, 97: 1797-1801. |
[22] | SHEN Z B, WANG X H, LUO B C, et al. BaTiO3-BiYbO3 perovskite materials for energy storage applications. Journal of Materials Chemistry A, 2015, 3: 18146-18153. |
[23] | LIU Y Q, LI H W. Study on structure an dielectric properties of Bi2O3 doped Sr0.92Ca0.08TiO3. Journal of Synthetic Crystals, 2020, 49: 555-559. |
[24] |
GUO D, LING Z H, HU X. Low temperature sintering and dielectric properties of Ba2Ti3Nb4O18 ceramics for silver co-sintering application. Journal of Materials Science: Materials in Electronics, 2009, 20(6): 582-586.
DOI URL |
[25] |
DESU S B, SUBBARAO E C. Effect of oxidation states of Mn on the phase stability of Mn-doped BaTiO3. Ferroelectrics, 1981, 37(1): 665-668.
DOI URL |
[26] | WERNICKE R. Defect chemistry and electrical-conductivity of doped barium-titanate ceramics. Kinetics of equilibrium restoration in barium-titanate ceramics. Philips Research Reports, 1976, 31(6): 526-543. |
[27] | Precision Devices Knowles. High reliability products. Specialty Products-Detonator and Pulse Energy, 60-61. |
[28] | QU B Y, DU H L, YANG Z T, et al. Large recoverable energy storage density and low sintering temperature in potassium-sodium niobate-based ceramics for multilayer pulsed power capacitors. Journal of the American Ceramic Society, 2017, 100: 1517-1526. |
[1] | 王彤宇, 冉皓丰, 周广东. 氧化铁忆阻器中缺陷态诱导的模拟型阻变及突触双脉冲易化特性[J]. 无机材料学报, 2023, 38(4): 437-444. |
[2] | 陈勇强, 王怡雪, 张帆, 李红霞, 董宾宾, 闵志宇, 张锐. 微波加热制备特种陶瓷材料研究进展[J]. 无机材料学报, 2022, 37(8): 841-852. |
[3] | 祝志祥,张强,朱思宇,卢成嘉,刘艺,杨佳,吴超峰,曹林洪,王轲,高志鹏,朱承治. 脉冲电场下ZnO压敏陶瓷动态击穿过程研究[J]. 无机材料学报, 2019, 34(7): 715-720. |
[4] | 龚皓, 苏贤礼, 鄢永高, 唐新峰. Cu2S在脉冲电场下的超快速制备及其热电性能[J]. 无机材料学报, 2019, 34(12): 1295-1300. |
[5] | 张立宪, 梁砚琴, 王绍丹, 卢红, 刘爱峰, 魏强. 脉冲激光喷涂一步合成黑色二氧化钛复合涂层[J]. 无机材料学报, 2019, 34(1): 109-113. |
[6] | 肖娜, 潘洋, 宋云, 吴晓京, 傅正文, 周永宁. 锑硅纳米复合薄膜作为钠离子电池负极材料的电化学行为研究[J]. 无机材料学报, 2018, 33(5): 494-500. |
[7] | 张聪, 康朝阳, 宗海涛, 李明, 梁珊珊, 曹国华. 应力对蓝宝石衬底上生长二氧化钒薄膜结构和光电性能的调控[J]. 无机材料学报, 2018, 33(11): 1225-1231. |
[8] | 吴志立, 李玉阁, 吴 彼, 雷明凯. 高功率调制脉冲磁控溅射沉积TiAlSiN纳米复合涂层结构调控与性能研究[J]. 无机材料学报, 2015, 30(12): 1254-1260. |
[9] | 张志萍, 刘红飞, 潘坤旻, 陈小兵, 曾祥华. Sc2W3O12薄膜制备及其负热膨胀性能[J]. 无机材料学报, 2015, 30(12): 1278-1282. |
[10] | 吕艳红, 陈吉堃, DOBELI Max, 李宇龙, 史 迅, 陈立东. 脉冲激光沉积中高能量密度激光密度对Cu2Se 热电薄膜成分与性能的影响[J]. 无机材料学报, 2015, 30(10): 1115-1120. |
[11] | 晏益志, 殷学鹏, 刘 翔, 陈清明. 衬底温度和生长氧压对La0.67Sr0.33MnO3:Ag0.08薄膜激光感生电压效应的影响[J]. 无机材料学报, 2014, 29(7): 753-757. |
[12] | 邱智文, 杨晓朋,韩 军, 曾雪松, 李新化, 曹丙强. 高压PLD法生长p型钠掺杂氧化锌纳米线阵列[J]. 无机材料学报, 2014, 29(2): 155-161. |
[13] | 吴建波, 晋云霞, 关贺元, 孔钒宇, 刘文文, 刘世杰, 易 葵. 退火温度对宽带脉冲压缩光栅载体金属/介质多层高反膜的影响[J]. 无机材料学报, 2014, 29(10): 1087-1092. |
[14] | 陈 丹, 吕建国, 黄靖云, 金豫浙, 张昊翔, 叶志镇. AZO薄膜用于GaN基LED透明电极的性能研究[J]. 无机材料学报, 2013, 28(06): 649-652. |
[15] | 李 颖, 董 伟, 三浦彩子, 谭 毅, 川崎亮. 球形铁基金属玻璃单分散粒子的制备及评价[J]. 无机材料学报, 2012, 27(8): 849-854. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||