无机材料学报 ›› 2022, Vol. 37 ›› Issue (6): 636-642.DOI: 10.15541/jim20210452
所属专题: 【结构材料】陶瓷基复合材料
夏乾(), 孙是昊, 赵义亮, 张翠萍(), 茹红强(), 王伟, 岳新艳
收稿日期:
2021-07-15
修回日期:
2021-08-19
出版日期:
2022-06-20
网络出版日期:
2021-09-27
通讯作者:
张翠萍, 讲师. E-mail: zhangcp@smm.neu.edu.cn;作者简介:
夏 乾(1995-), 男, 博士研究生. E-mail: 1910177@stu.neu.edu.cn
基金资助:
XIA Qian(), SUN Shihao, ZHAO Yiliang, ZHANG Cuiping(), RU Hongqiang(), WANG Wei, YUE Xinyan
Received:
2021-07-15
Revised:
2021-08-19
Published:
2022-06-20
Online:
2021-09-27
Contact:
ZHANG Cuiping, lecturer. E-mail: zhangcp@smm.neu.edu.cn;About author:
XIA Qian (1995–), male, PhD candidate. E-mail: 1910177@stu.neu.edu.cn
Supported by:
摘要:
本研究探讨了碳化硼原料颗粒尺寸对反应结合碳化硼复合材料相组成、结构与性能的影响。研究结果表明:颗粒级配可以使粉体堆积更加密实, 有效提高压制坯体的体积密度, 最终降低复合材料中游离Si的含量; 加入粗颗粒可减缓B4C与Si的反应, 减少SiC相的生成; 当原料中粒径为3.5、14、28、45 μm的B4C粉体按质量比为1.5 : 4 : 1.5 : 3配比时, 所制备的复合材料维氏硬度、抗弯强度、断裂韧性和体积密度分别为(29±5) GPa、(320±32) MPa、(3.9±0.2) MPa·m1/2和2.51 g/cm3。在制备复合材料过程中减缓B4C与Si反应速度、减少游离Si的含量和缩小Si区域尺寸是其性能升高的主要原因。
中图分类号:
夏乾, 孙是昊, 赵义亮, 张翠萍, 茹红强, 王伟, 岳新艳. 碳化硼颗粒级配对硅反应结合碳化硼复合材料结构与性能的影响[J]. 无机材料学报, 2022, 37(6): 636-642.
XIA Qian, SUN Shihao, ZHAO Yiliang, ZHANG Cuiping, RU Hongqiang, WANG Wei, YUE Xinyan. Effect of Boron Carbide Particle Size Distribution on the Microstructure and Properties of Reaction Bonded Boron Carbide Ceramic Composites by Silicon Infiltration[J]. Journal of Inorganic Materials, 2022, 37(6): 636-642.
Group | Diameter of B4C powders (D50)/μm | |||||
---|---|---|---|---|---|---|
3.5 | 14 | 28 | 45 | 70 | 120 | |
1 | 100 | 0 | 0 | 0 | 0 | 0 |
2 | 15 | 40 | 15 | 30 | 0 | 0 |
3 | 33 | 25 | 0 | 42 | 0 | 0 |
4 | 26 | 32 | 0 | 42 | 0 | 0 |
5 | 40 | 24 | 0 | 0 | 36 | 0 |
6 | 30 | 28 | 0 | 0 | 36 | 0 |
7 | 33 | 25 | 0 | 0 | 42 | 0 |
8 | 40 | 0 | 18 | 0 | 0 | 42 |
9 | 30 | 0 | 28 | 0 | 0 | 42 |
10 | 19 | 14 | 25 | 0 | 0 | 42 |
11 | 20 | 15 | 0 | 0 | 0 | 65 |
12 | 0 | 0 | 0 | 0 | 0 | 100 |
表1 B4C原料粉体的颗粒级配配方(%, 质量分数)
Table 1 Ratio of B4C raw material powders with different particle size distributions (%, in mass)
Group | Diameter of B4C powders (D50)/μm | |||||
---|---|---|---|---|---|---|
3.5 | 14 | 28 | 45 | 70 | 120 | |
1 | 100 | 0 | 0 | 0 | 0 | 0 |
2 | 15 | 40 | 15 | 30 | 0 | 0 |
3 | 33 | 25 | 0 | 42 | 0 | 0 |
4 | 26 | 32 | 0 | 42 | 0 | 0 |
5 | 40 | 24 | 0 | 0 | 36 | 0 |
6 | 30 | 28 | 0 | 0 | 36 | 0 |
7 | 33 | 25 | 0 | 0 | 42 | 0 |
8 | 40 | 0 | 18 | 0 | 0 | 42 |
9 | 30 | 0 | 28 | 0 | 0 | 42 |
10 | 19 | 14 | 25 | 0 | 0 | 42 |
11 | 20 | 15 | 0 | 0 | 0 | 65 |
12 | 0 | 0 | 0 | 0 | 0 | 100 |
图3 不同颗粒级配配方RBBC复合材料的XRD图谱
Fig. 3 XRD patterns of RBBC composites with different particle size distributions (a) XRD patterns of RBBC composites; (b) Diffraction peaks of B4C; (c) Diffraction peaks of SiC
Group | Theoretical | Actual | |||
---|---|---|---|---|---|
B4C | Si | B4C+B12(C,Si,B)3 | SiC | Si | |
R1 | 54.8 | 45.2 | 57.3 | 14.2 | 28.5 |
R2 | 62.7 | 37.3 | 63.9 | 13.3 | 22.8 |
R10 | 68.7 | 31.3 | 67.8 | 5.2 | 27.0 |
R11 | 69.9 | 30.1 | 69.4 | 5.1 | 25.5 |
R12 | 54.4 | 45.6 | 53.8 | 3.5 | 42.7 |
表2 不同颗粒级配配方RBBC复合材料的相组成(体积分数)
Table 2 Phase composition of RBBC composites with different particle size distributions (%, in volume)
Group | Theoretical | Actual | |||
---|---|---|---|---|---|
B4C | Si | B4C+B12(C,Si,B)3 | SiC | Si | |
R1 | 54.8 | 45.2 | 57.3 | 14.2 | 28.5 |
R2 | 62.7 | 37.3 | 63.9 | 13.3 | 22.8 |
R10 | 68.7 | 31.3 | 67.8 | 5.2 | 27.0 |
R11 | 69.9 | 30.1 | 69.4 | 5.1 | 25.5 |
R12 | 54.4 | 45.6 | 53.8 | 3.5 | 42.7 |
Group | Open porosity/% | Volume density/(g·cm-3) |
---|---|---|
R1 | 0.16 | 2.50 |
R2 | 0.16 | 2.51 |
R10 | 0.25 | 2.50 |
R11 | 0.22 | 2.51 |
R12 | 0.26 | 2.47 |
表3 不同颗粒级配配方RBBC复合材料的开口气孔率和体积密度
Table 3 Volume densities and open porosities of RBBC composites with different particle size distributions
Group | Open porosity/% | Volume density/(g·cm-3) |
---|---|---|
R1 | 0.16 | 2.50 |
R2 | 0.16 | 2.51 |
R10 | 0.25 | 2.50 |
R11 | 0.22 | 2.51 |
R12 | 0.26 | 2.47 |
[1] |
SONG Q, ZHANG Z H, HU Z Y, et al. Microstructure and mechanical properties of super-hard B4C ceramic fabricated by spark plasma sintering with (Ti3SiC2+Si) as sintering aid. Ceramics International, 2019, 45(7): 8790-8797.
DOI URL |
[2] |
MASHHADI M, TAHERI N E, SGLAVO V M. Pressureless sintering of boron carbide. Ceramics International, 2010, 36(1): 151-159.
DOI URL |
[3] |
ZHANG X, ZHANG Z, YANG S, et al. Preparation, microstructure and toughening mechanism of superhard ultrafine grained boron carbide ceramics with outstanding fracture toughness. Journal of Alloys and Compounds, 2018, 762: 125-132.
DOI URL |
[4] |
CHEN M, YIN Z, YUAN J, et al. Microstructure and properties of a graphene platelets toughened boron carbide composite ceramic by spark plasma sintering. Ceramics International, 2018, 44(13): 15370-15377.
DOI URL |
[5] |
LEE H, SPEYER R F. Pressureless sintering of boron carbide. Journal of the American Ceramic Society, 2003, 86(9): 1468-1473.
DOI URL |
[6] |
DOMNICH V, REYNAUD S, HABER R A, et al. Boron carbide: structure, properties, and stability under stress. Journal of the American Ceramic Society, 2011, 94(11): 3605-3628.
DOI URL |
[7] |
PEREVISLOV S N, SHCHERBAK P V, TOMKOVICH M V. High density boron carbide ceramics. Refractories and Industrial Ceramics, 2018, 59(1): 32-36.
DOI URL |
[8] |
MOSHTAGHIOUM B M, CUMBRERA-HERNANDEZ F L, GÓMEZ-GARCÍA D, et al. Effect of spark plasma sintering parameters on microstructure and room-temperature hardness and toughness of fine-grained boron carbide (B4C). Journal of the European Ceramic Society, 2013, 33(2): 361-369.
DOI URL |
[9] |
HAYUN S, PARIS V, DARIEL M P, et al. Static and dynamic mechanical properties of boron carbide processed by spark plasma sintering. Journal of the European Ceramic Society, 2009, 29(16): 3395-3400.
DOI URL |
[10] |
MA L N, XIE K Y, TOKSOY M F, et al. The effect of Si on the microstructure and mechanical properties of spark plasma sintered boron carbide. Materials Characterization, 2017, 134: 274-278.
DOI URL |
[11] |
WU J, BO N, FAN Z, et al. Effect of titanium diboride on the homogeneity of boron carbide ceramic by flash spark plasma sintering. Ceramics International, 2018, 44(13): 15323-15330.
DOI URL |
[12] |
ZHANG M, LI R, YUAN T, et al. Effect of low-melting-point sintering aid on densification mechanisms of boron carbide during spark plasma sintering. Scripta Materialia, 2019, 163: 34-39.
DOI URL |
[13] |
LIU Z T, DENG X G, LI J M, et al. Effects of B4C particle size on the microstructures and mechanical properties of hot-pressed B4C- TiB2composites. Ceramics International, 2018, 44(17): 21415-21420.
DOI URL |
[14] |
SWAB J J, PITTARI J J, GAMBLE W R. Uniaxial tensile strength and fracture analysis of a hot-pressed boron carbide. Journal of the European Ceramic Society, 2019, 39(6): 1965-1973.
DOI URL |
[15] |
ZHANG M, LI R, YUAN T, et al. Densification and properties of B4C-based ceramics with CrMnFeCoNi high entropy alloy as a sintering aid by spark plasma sintering. Powder Technology, 2019, 343: 58-67.
DOI URL |
[16] | 阮建明, 黄培云. 粉末冶金原理. 北京: 机械工业出版社, 2012: 158. |
[17] |
SUN M Y, BAI Y H, LI M X, et al. In situ toughened two-phase B12(C,Si,B)3-SiC ceramics fabricated via liquid silicon infiltration. Journal of the American Ceramic Society, 2019, 102(4): 2094-2103.
DOI URL |
[18] |
HAYUN S, FRAGE N, DARIEL M P. The morphology of ceramic phases in BxC-SiC-Si infiltrated composites. Journal of Solid State Chemistry, 2006, 179(9): 2875-2879.
DOI URL |
[19] | WANG T, NI C, KARANDIKAR P. Microstructure characteristics of reaction-bonded B4C/SiC composite. Characterization of Minerals Metals & Materials, 2016: 279-286 |
[20] |
WILHELM M, WERDENICH S, WRUSS W. Influence of resin content and compaction pressure on the mechanical properties of SiC-Si composites with sub-micron SiC microstructures. Journal of the European Ceramic Society, 2001, 21(7): 981-990.
DOI URL |
[21] |
BARICK P, JANA D C, THIYAGARAJAN N. Effect of particle size on the mechanical properties of reaction bonded boron carbide ceramics. Ceramics International, 2013, 39(1): 763-770.
DOI URL |
[22] |
HAYUN S, WEIZMANN A, DARIEL M P, et al. The effect of particle size distribution on the microstructure and the mechanical properties of boron carbide-based reaction-bonded composites. International Journal of Applied Ceramic Technology, 2009, 6(4): 492-500.
DOI URL |
[23] | BARSOUM M W. Fundamentals of ceramics, 1st edition. New York:Mc. Grow-Hill Book Inc, 1997:319-326. |
[24] |
CHAKRABARTI O P, GHOSH S, MUKHERJEE J. Influence of grain size, free silicon content and temperature on the strength and toughness of reaction-bonded silicon carbide. Ceramics International, 1994, 20: 283-286.
DOI URL |
[1] | 安文然, 黄晶琪, 卢祥荣, 蒋佳宁, 邓龙辉, 曹学强. 热处理温度对LaMgAl11O19涂层热/力学性能的影响[J]. 无机材料学报, 2022, 37(9): 925-932. |
[2] | 张叶, 曾宇平. 自蔓延高温合成氮化硅多孔陶瓷的研究进展[J]. 无机材料学报, 2022, 37(8): 853-864. |
[3] | 洪督, 牛亚然, 李红, 钟鑫, 郑学斌. 等离子喷涂TiC-Graphite复合涂层摩擦磨损性能[J]. 无机材料学报, 2022, 37(6): 643-650. |
[4] | 徐谱昊, 张相召, 刘桂武, 张明芬, 桂新易, 乔冠军. Al-Ti合金钎焊SiC陶瓷接头界面微观结构与力学性能[J]. 无机材料学报, 2022, 37(6): 683-690. |
[5] | 丁健翔, 张凯歌, 柳东明, 郑伟, 张培根, 孙正明. Ti3AlC2陶瓷及其衍生物Ti3C2Tx增强的Ag基电接触材料[J]. 无机材料学报, 2022, 37(5): 567-573. |
[6] | 蔚海浪, 曹学强, 邓龙辉, 蒋佳宁. LaMeAl11O19/YSZ热障涂层热力学性能和热循环寿命[J]. 无机材料学报, 2022, 37(12): 1259-1266. |
[7] | 孙扬善, 杨治华, 蔡德龙, 张正义, 柳琪, 房树清, 冯良, 石丽芬, 王友乐, 贾德昌. 粉末烧结法制备α-堇青石基玻璃陶瓷的析晶动力学和性能[J]. 无机材料学报, 2022, 37(12): 1351-1357. |
[8] | 吴西士, 朱云洲, 黄庆, 黄政仁. 树脂基多孔碳孔结构对Cf/SiC复合材料连接性能的影响[J]. 无机材料学报, 2022, 37(12): 1275-1280. |
[9] | 孙鲁超, 周翠, 杜铁锋, 吴贞, 雷一明, 李家麟, 苏海军, 王京阳. 光悬浮区熔定向凝固Al2O3/Er3Al5O12和Al2O3/Yb3Al5O12共晶陶瓷的制备与性能研究[J]. 无机材料学报, 2021, 36(6): 652-658. |
[10] | 吕莎莎, 祖宇飞, 陈国清, 赵伯俊, 付雪松, 周文龙. 陶瓷颗粒增强Cr0.5MoNbWTi难熔高熵合金复合材料的制备及其力学性能[J]. 无机材料学报, 2021, 36(4): 386-392. |
[11] | 王皓轩, 刘巧沐, 王一光. 高熵过渡金属碳化物陶瓷的研究进展[J]. 无机材料学报, 2021, 36(4): 355-364. |
[12] | 金敏, 白旭东, 赵素, 张如林, 陈玉奇, 周丽娜. 坩埚下降法生长SnSe单晶及其力学性能研究[J]. 无机材料学报, 2021, 36(3): 313-318. |
[13] | 李陇彬, 薛玉冬, 胡建宝, 杨金山, 张翔宇, 董绍明. 碳化硅纳米线增韧碳化硅纤维/碳化硅基体损伤行为研究[J]. 无机材料学报, 2021, 36(10): 1111-1117. |
[14] | 马登浩, 侯振华, 李军平, 孙新, 金恩泽, 尹健. 界面相对3D-SiC/SiC复合材料静态力学性能及内耗特征的影响[J]. 无机材料学报, 2021, 36(1): 55-60. |
[15] | 陈磊,王恺,苏文韬,张文,徐晨光,王玉金,周玉. 过渡金属非氧化物高熵陶瓷的研究进展[J]. 无机材料学报, 2020, 35(7): 748-758. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||