无机材料学报 ›› 2022, Vol. 37 ›› Issue (6): 636-642.DOI: 10.15541/jim20210452 CSTR: 32189.14.10.15541/jim20210452
所属专题: 【结构材料】陶瓷基复合材料(202409)
夏乾(), 孙是昊, 赵义亮, 张翠萍(
), 茹红强(
), 王伟, 岳新艳
收稿日期:
2021-07-15
修回日期:
2021-08-19
出版日期:
2022-06-20
网络出版日期:
2021-09-27
通讯作者:
张翠萍, 讲师. E-mail: zhangcp@smm.neu.edu.cn;作者简介:
夏 乾(1995-), 男, 博士研究生. E-mail: 1910177@stu.neu.edu.cn
基金资助:
XIA Qian(), SUN Shihao, ZHAO Yiliang, ZHANG Cuiping(
), RU Hongqiang(
), WANG Wei, YUE Xinyan
Received:
2021-07-15
Revised:
2021-08-19
Published:
2022-06-20
Online:
2021-09-27
Contact:
ZHANG Cuiping, lecturer. E-mail: zhangcp@smm.neu.edu.cn;About author:
XIA Qian (1995–), male, PhD candidate. E-mail: 1910177@stu.neu.edu.cn
Supported by:
摘要:
本研究探讨了碳化硼原料颗粒尺寸对反应结合碳化硼复合材料相组成、结构与性能的影响。研究结果表明:颗粒级配可以使粉体堆积更加密实, 有效提高压制坯体的体积密度, 最终降低复合材料中游离Si的含量; 加入粗颗粒可减缓B4C与Si的反应, 减少SiC相的生成; 当原料中粒径为3.5、14、28、45 μm的B4C粉体按质量比为1.5 : 4 : 1.5 : 3配比时, 所制备的复合材料维氏硬度、抗弯强度、断裂韧性和体积密度分别为(29±5) GPa、(320±32) MPa、(3.9±0.2) MPa·m1/2和2.51 g/cm3。在制备复合材料过程中减缓B4C与Si反应速度、减少游离Si的含量和缩小Si区域尺寸是其性能升高的主要原因。
中图分类号:
夏乾, 孙是昊, 赵义亮, 张翠萍, 茹红强, 王伟, 岳新艳. 碳化硼颗粒级配对硅反应结合碳化硼复合材料结构与性能的影响[J]. 无机材料学报, 2022, 37(6): 636-642.
XIA Qian, SUN Shihao, ZHAO Yiliang, ZHANG Cuiping, RU Hongqiang, WANG Wei, YUE Xinyan. Effect of Boron Carbide Particle Size Distribution on the Microstructure and Properties of Reaction Bonded Boron Carbide Ceramic Composites by Silicon Infiltration[J]. Journal of Inorganic Materials, 2022, 37(6): 636-642.
Group | Diameter of B4C powders (D50)/μm | |||||
---|---|---|---|---|---|---|
3.5 | 14 | 28 | 45 | 70 | 120 | |
1 | 100 | 0 | 0 | 0 | 0 | 0 |
2 | 15 | 40 | 15 | 30 | 0 | 0 |
3 | 33 | 25 | 0 | 42 | 0 | 0 |
4 | 26 | 32 | 0 | 42 | 0 | 0 |
5 | 40 | 24 | 0 | 0 | 36 | 0 |
6 | 30 | 28 | 0 | 0 | 36 | 0 |
7 | 33 | 25 | 0 | 0 | 42 | 0 |
8 | 40 | 0 | 18 | 0 | 0 | 42 |
9 | 30 | 0 | 28 | 0 | 0 | 42 |
10 | 19 | 14 | 25 | 0 | 0 | 42 |
11 | 20 | 15 | 0 | 0 | 0 | 65 |
12 | 0 | 0 | 0 | 0 | 0 | 100 |
表1 B4C原料粉体的颗粒级配配方(%, 质量分数)
Table 1 Ratio of B4C raw material powders with different particle size distributions (%, in mass)
Group | Diameter of B4C powders (D50)/μm | |||||
---|---|---|---|---|---|---|
3.5 | 14 | 28 | 45 | 70 | 120 | |
1 | 100 | 0 | 0 | 0 | 0 | 0 |
2 | 15 | 40 | 15 | 30 | 0 | 0 |
3 | 33 | 25 | 0 | 42 | 0 | 0 |
4 | 26 | 32 | 0 | 42 | 0 | 0 |
5 | 40 | 24 | 0 | 0 | 36 | 0 |
6 | 30 | 28 | 0 | 0 | 36 | 0 |
7 | 33 | 25 | 0 | 0 | 42 | 0 |
8 | 40 | 0 | 18 | 0 | 0 | 42 |
9 | 30 | 0 | 28 | 0 | 0 | 42 |
10 | 19 | 14 | 25 | 0 | 0 | 42 |
11 | 20 | 15 | 0 | 0 | 0 | 65 |
12 | 0 | 0 | 0 | 0 | 0 | 100 |
图3 不同颗粒级配配方RBBC复合材料的XRD图谱
Fig. 3 XRD patterns of RBBC composites with different particle size distributions (a) XRD patterns of RBBC composites; (b) Diffraction peaks of B4C; (c) Diffraction peaks of SiC
Group | Theoretical | Actual | |||
---|---|---|---|---|---|
B4C | Si | B4C+B12(C,Si,B)3 | SiC | Si | |
R1 | 54.8 | 45.2 | 57.3 | 14.2 | 28.5 |
R2 | 62.7 | 37.3 | 63.9 | 13.3 | 22.8 |
R10 | 68.7 | 31.3 | 67.8 | 5.2 | 27.0 |
R11 | 69.9 | 30.1 | 69.4 | 5.1 | 25.5 |
R12 | 54.4 | 45.6 | 53.8 | 3.5 | 42.7 |
表2 不同颗粒级配配方RBBC复合材料的相组成(体积分数)
Table 2 Phase composition of RBBC composites with different particle size distributions (%, in volume)
Group | Theoretical | Actual | |||
---|---|---|---|---|---|
B4C | Si | B4C+B12(C,Si,B)3 | SiC | Si | |
R1 | 54.8 | 45.2 | 57.3 | 14.2 | 28.5 |
R2 | 62.7 | 37.3 | 63.9 | 13.3 | 22.8 |
R10 | 68.7 | 31.3 | 67.8 | 5.2 | 27.0 |
R11 | 69.9 | 30.1 | 69.4 | 5.1 | 25.5 |
R12 | 54.4 | 45.6 | 53.8 | 3.5 | 42.7 |
Group | Open porosity/% | Volume density/(g·cm-3) |
---|---|---|
R1 | 0.16 | 2.50 |
R2 | 0.16 | 2.51 |
R10 | 0.25 | 2.50 |
R11 | 0.22 | 2.51 |
R12 | 0.26 | 2.47 |
表3 不同颗粒级配配方RBBC复合材料的开口气孔率和体积密度
Table 3 Volume densities and open porosities of RBBC composites with different particle size distributions
Group | Open porosity/% | Volume density/(g·cm-3) |
---|---|---|
R1 | 0.16 | 2.50 |
R2 | 0.16 | 2.51 |
R10 | 0.25 | 2.50 |
R11 | 0.22 | 2.51 |
R12 | 0.26 | 2.47 |
[1] |
SONG Q, ZHANG Z H, HU Z Y, et al. Microstructure and mechanical properties of super-hard B4C ceramic fabricated by spark plasma sintering with (Ti3SiC2+Si) as sintering aid. Ceramics International, 2019, 45(7): 8790-8797.
DOI URL |
[2] |
MASHHADI M, TAHERI N E, SGLAVO V M. Pressureless sintering of boron carbide. Ceramics International, 2010, 36(1): 151-159.
DOI URL |
[3] |
ZHANG X, ZHANG Z, YANG S, et al. Preparation, microstructure and toughening mechanism of superhard ultrafine grained boron carbide ceramics with outstanding fracture toughness. Journal of Alloys and Compounds, 2018, 762: 125-132.
DOI URL |
[4] |
CHEN M, YIN Z, YUAN J, et al. Microstructure and properties of a graphene platelets toughened boron carbide composite ceramic by spark plasma sintering. Ceramics International, 2018, 44(13): 15370-15377.
DOI URL |
[5] |
LEE H, SPEYER R F. Pressureless sintering of boron carbide. Journal of the American Ceramic Society, 2003, 86(9): 1468-1473.
DOI URL |
[6] |
DOMNICH V, REYNAUD S, HABER R A, et al. Boron carbide: structure, properties, and stability under stress. Journal of the American Ceramic Society, 2011, 94(11): 3605-3628.
DOI URL |
[7] |
PEREVISLOV S N, SHCHERBAK P V, TOMKOVICH M V. High density boron carbide ceramics. Refractories and Industrial Ceramics, 2018, 59(1): 32-36.
DOI URL |
[8] |
MOSHTAGHIOUM B M, CUMBRERA-HERNANDEZ F L, GÓMEZ-GARCÍA D, et al. Effect of spark plasma sintering parameters on microstructure and room-temperature hardness and toughness of fine-grained boron carbide (B4C). Journal of the European Ceramic Society, 2013, 33(2): 361-369.
DOI URL |
[9] |
HAYUN S, PARIS V, DARIEL M P, et al. Static and dynamic mechanical properties of boron carbide processed by spark plasma sintering. Journal of the European Ceramic Society, 2009, 29(16): 3395-3400.
DOI URL |
[10] |
MA L N, XIE K Y, TOKSOY M F, et al. The effect of Si on the microstructure and mechanical properties of spark plasma sintered boron carbide. Materials Characterization, 2017, 134: 274-278.
DOI URL |
[11] |
WU J, BO N, FAN Z, et al. Effect of titanium diboride on the homogeneity of boron carbide ceramic by flash spark plasma sintering. Ceramics International, 2018, 44(13): 15323-15330.
DOI URL |
[12] |
ZHANG M, LI R, YUAN T, et al. Effect of low-melting-point sintering aid on densification mechanisms of boron carbide during spark plasma sintering. Scripta Materialia, 2019, 163: 34-39.
DOI URL |
[13] |
LIU Z T, DENG X G, LI J M, et al. Effects of B4C particle size on the microstructures and mechanical properties of hot-pressed B4C- TiB2composites. Ceramics International, 2018, 44(17): 21415-21420.
DOI URL |
[14] |
SWAB J J, PITTARI J J, GAMBLE W R. Uniaxial tensile strength and fracture analysis of a hot-pressed boron carbide. Journal of the European Ceramic Society, 2019, 39(6): 1965-1973.
DOI URL |
[15] |
ZHANG M, LI R, YUAN T, et al. Densification and properties of B4C-based ceramics with CrMnFeCoNi high entropy alloy as a sintering aid by spark plasma sintering. Powder Technology, 2019, 343: 58-67.
DOI URL |
[16] | 阮建明, 黄培云. 粉末冶金原理. 北京: 机械工业出版社, 2012: 158. |
[17] |
SUN M Y, BAI Y H, LI M X, et al. In situ toughened two-phase B12(C,Si,B)3-SiC ceramics fabricated via liquid silicon infiltration. Journal of the American Ceramic Society, 2019, 102(4): 2094-2103.
DOI URL |
[18] |
HAYUN S, FRAGE N, DARIEL M P. The morphology of ceramic phases in BxC-SiC-Si infiltrated composites. Journal of Solid State Chemistry, 2006, 179(9): 2875-2879.
DOI URL |
[19] | WANG T, NI C, KARANDIKAR P. Microstructure characteristics of reaction-bonded B4C/SiC composite. Characterization of Minerals Metals & Materials, 2016: 279-286 |
[20] |
WILHELM M, WERDENICH S, WRUSS W. Influence of resin content and compaction pressure on the mechanical properties of SiC-Si composites with sub-micron SiC microstructures. Journal of the European Ceramic Society, 2001, 21(7): 981-990.
DOI URL |
[21] |
BARICK P, JANA D C, THIYAGARAJAN N. Effect of particle size on the mechanical properties of reaction bonded boron carbide ceramics. Ceramics International, 2013, 39(1): 763-770.
DOI URL |
[22] |
HAYUN S, WEIZMANN A, DARIEL M P, et al. The effect of particle size distribution on the microstructure and the mechanical properties of boron carbide-based reaction-bonded composites. International Journal of Applied Ceramic Technology, 2009, 6(4): 492-500.
DOI URL |
[23] | BARSOUM M W. Fundamentals of ceramics, 1st edition. New York:Mc. Grow-Hill Book Inc, 1997:319-326. |
[24] |
CHAKRABARTI O P, GHOSH S, MUKHERJEE J. Influence of grain size, free silicon content and temperature on the strength and toughness of reaction-bonded silicon carbide. Ceramics International, 1994, 20: 283-286.
DOI URL |
[1] | 范武刚, 曹雄, 周响, 李玲, 赵冠楠, 张兆泉. 8YSZ陶瓷在模拟压水堆水环境中的耐腐蚀性能[J]. 无机材料学报, 2024, 39(7): 803-809. |
[2] | 王康龙, 殷杰, 陈晓, 王力, 刘学建, 黄政仁. 颗粒级配对选区激光烧结打印结合常压固相烧结制备碳化硅陶瓷性能的影响[J]. 无机材料学报, 2024, 39(7): 754-760. |
[3] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[4] | 孙海洋, 季伟, 王为民, 傅正义. TiB-Ti周期序构复合材料设计、制备及性能研究[J]. 无机材料学报, 2024, 39(6): 662-670. |
[5] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[6] | 刘国昂, 王海龙, 方成, 黄飞龙, 杨欢. B4C含量对(Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C陶瓷力学性能及抗氧化性能的影响[J]. 无机材料学报, 2024, 39(6): 697-706. |
[7] | 粟毅, 史扬帆, 贾成兰, 迟蓬涛, 高扬, 马青松, 陈思安. 浆料浸渍辅助PIP工艺制备C/HfC-SiC复合材料的微观结构及性能研究[J]. 无机材料学报, 2024, 39(6): 726-732. |
[8] | 郑雅雯, 张翠萍, 张瑞杰, 夏乾, 茹红强. 硼酸碳热还原-渗硅反应烧结制备碳化硼陶瓷复合材料[J]. 无机材料学报, 2024, 39(6): 707-714. |
[9] | 李雷, 程群峰. 高性能MXenes纳米复合材料研究进展[J]. 无机材料学报, 2024, 39(2): 153-161. |
[10] | 刘艳艳, 谢曦, 刘增乾, 张哲峰. MAX相陶瓷增强金属基复合材料: 制备、性能与仿生设计[J]. 无机材料学报, 2024, 39(2): 145-152. |
[11] | 王博, 蔡德龙, 朱启帅, 李达鑫, 杨治华, 段小明, 李雅楠, 王轩, 贾德昌, 周玉. SrAl2Si2O8增强BN陶瓷的力学性能及抗热震性能[J]. 无机材料学报, 2024, 39(10): 1182-1188. |
[12] | 倪晓诗, 林子扬, 秦沐严, 叶松, 王德平. 硅烷化介孔硼硅酸盐生物玻璃微球对PMMA骨水泥生物活性和力学性能的影响[J]. 无机材料学报, 2023, 38(8): 971-977. |
[13] | 顾薛苏, 殷杰, 王康龙, 崔崇, 梅辉, 陈忠明, 刘学建, 黄政仁. 颗粒级配对黏结剂喷射打印碳化硅陶瓷性能的影响[J]. 无机材料学报, 2023, 38(12): 1373-1378. |
[14] | 付师, 杨增朝, 李江涛. 功率模块封装用高强度高热导率Si3N4陶瓷的研究进展[J]. 无机材料学报, 2023, 38(10): 1117-1132. |
[15] | 吴东江, 赵紫渊, 于学鑫, 马广义, 由竹琳, 任冠辉, 牛方勇. Al2O3-TiCp复相陶瓷激光定向能量沉积直接增材制造[J]. 无机材料学报, 2023, 38(10): 1183-1192. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||