无机材料学报 ›› 2021, Vol. 36 ›› Issue (10): 1111-1117.DOI: 10.15541/jim20210045
李陇彬1,2(), 薛玉冬1,2, 胡建宝1,2, 杨金山1,2, 张翔宇1,2, 董绍明1,2()
收稿日期:
2021-01-27
修回日期:
2021-04-15
出版日期:
2021-10-20
网络出版日期:
2021-05-10
通讯作者:
董绍明, 研究员. E-mail: smdong@mail.sic.ac.cn
作者简介:
李陇彬(1997–), 男, 硕士研究生. E-mail: medolia97@student.sic.ac.cn
LI Longbin1,2(), XUE Yudong1,2, HU Jianbao1,2, YANG Jinshan1,2, ZHANG Xiangyu1,2, DONG Shaoming1,2()
Received:
2021-01-27
Revised:
2021-04-15
Published:
2021-10-20
Online:
2021-05-10
Contact:
DONG Shaoming, professor. E-mail: smdong@mail.sic.ac.cn
About author:
LI Longbin(1997–), male, Master candidate. Email: medolia97@student.sic.ac.cn
Supported by:
摘要:
通过在碳化硅纤维表面原位生长纳米线得到具有多级增强结构的碳化硅复合材料, 对复合材料引入纳米线后的微观结构、弯曲强度以及损伤的变化过程进行了研究。研究结果表明, 相较于原始的碳化硅纤维增强碳化硅复合材料, 碳化硅纳米线可以明显提高基体沉积效率并改善材料的弯曲力学性能。从声发射技术和维氏硬度压痕测试结果可以看出, 纳米线通过抑制微裂纹的产生和在微裂纹之间发生桥联来抑制早期损伤的发展。此外, 在纳米线表面沉积一层氮化硼界面相, 纳米线与基体之间的结合力变弱, 复合材料对微裂纹的抑制和偏转得到进一步增强, 弯曲性能大幅提升。
中图分类号:
李陇彬, 薛玉冬, 胡建宝, 杨金山, 张翔宇, 董绍明. 碳化硅纳米线增韧碳化硅纤维/碳化硅基体损伤行为研究[J]. 无机材料学报, 2021, 36(10): 1111-1117.
LI Longbin, XUE Yudong, HU Jianbao, YANG Jinshan, ZHANG Xiangyu, DONG Shaoming. Influence of SiC Nanowires on the Damage Evolution of SiCf/SiC Composites[J]. Journal of Inorganic Materials, 2021, 36(10): 1111-1117.
Fig. 2 Typical SEM images of (a, b) as-grown SiCnw, (c) BN-coated SiCnw, and typical SEM images demonstrating the pore size of (d) SiCf/SiC and (e) SiCf/SiC-SiCnw composites
Composite | SiCf/SiC | SiCf/SiC- SiCnw/BN | SiCf/ SiC-SiCnw |
---|---|---|---|
Bulk density/(g·cm-3) | (1.98±0.03) | (2.02±0.04) | (2.08±0.03) |
Open porosity/% | (17.64±1.08) | (14.39±0.60) | (11.58±1.35) |
Table 1 Density and porosity of different composites
Composite | SiCf/SiC | SiCf/SiC- SiCnw/BN | SiCf/ SiC-SiCnw |
---|---|---|---|
Bulk density/(g·cm-3) | (1.98±0.03) | (2.02±0.04) | (2.08±0.03) |
Open porosity/% | (17.64±1.08) | (14.39±0.60) | (11.58±1.35) |
Composite | SiCnw content / wt% | Flexural strength, σu/MPa | Proportional limit stress, σPL/MPa | Strain at flexural strength, εu/% | First AE stress, σmin/MPa | AE onset stress, σonset/MPa |
---|---|---|---|---|---|---|
SiCf/SiC | 0 | (356.7±16.2) | (153.9±6.4) | (0.39±0.05) | (58.8±7.5) | (116.1±8.9) |
SiCf/SiC-SiCnw | 2.0 | (412.6±22.4) | (185.1±7.7) | (0.63±0.06) | (66.1±6.2) | (155.8±7.7) |
SiCf/SiC-SiCnw/BN | 2.0 | (506.4±28.3) | (247.7±8.6) | (0.88±0.12) | (78.5±5.2) | (171.6±15.9) |
Table 2 Properties of original composites, as-grown and BN-coated hierarchical composites
Composite | SiCnw content / wt% | Flexural strength, σu/MPa | Proportional limit stress, σPL/MPa | Strain at flexural strength, εu/% | First AE stress, σmin/MPa | AE onset stress, σonset/MPa |
---|---|---|---|---|---|---|
SiCf/SiC | 0 | (356.7±16.2) | (153.9±6.4) | (0.39±0.05) | (58.8±7.5) | (116.1±8.9) |
SiCf/SiC-SiCnw | 2.0 | (412.6±22.4) | (185.1±7.7) | (0.63±0.06) | (66.1±6.2) | (155.8±7.7) |
SiCf/SiC-SiCnw/BN | 2.0 | (506.4±28.3) | (247.7±8.6) | (0.88±0.12) | (78.5±5.2) | (171.6±15.9) |
Fig. 3 SEM fractural morphologies of (a) as-grown SiCnw, (b, c) BN-coated SiCnw in composites Local parts marked by white rectangular borders demonstrating that SiCnw tends to break (a) or pull out (b, c)
Fig. 4 Fracture morphologies of composite (a) SiCf/SiC, (b) SiCf/SiC-SiCnw and (c) SiCf/SiC-SiCnw/BN The images demonstrating the pull-out length of fibers
Fig. 5 Representative normalized cumulative AE energy curves as a function of stress (a) for composite SiCf/SiC (orange), SiCf/SiC-SiCnw (black) and SiCf/SiC-SiCnw/BN (blue) To clarify the difference of damage threshold among these three groups, initial key part (grey area) in (a) is magnified in (b). Colorful figures are available on website
Fig. 6 Typical stress-strain curves of SiCf/SiC(orange), SiCf/SiC-SiCnw (black) and SiCf/SiC-SiCnw/BN (blue) The proportional limit is pointed out in the picture. Colorful figures are available on website
Fig. 7 Scatter diagrams of the energy of individual AE events as a function of time in composites (a) SiCf/SiC, (b) SiCf/SiC-SiCnw, and (c) SiCf/SiC-SiCnw/BN Considering the massive amount of data, diagrams are depicted after compression
[1] |
NASLAIN R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Composites Science and Technology, 2004, 64(2):155-170.
DOI URL |
[2] | DICARLO J A, van ROODE M. Ceramic Composite Development for Gas Turbine Engine Hot Section Components. Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air, F, 2006. Volume 2: Aircraft Engine; Ceramics; Coal, Biomass and Alternative Fuels; Controls, Diagnostics and Instrumentation; Environmental and Regulatory Affairs. Barcelona, Spain. May 8-11, 2006: 221-231. |
[3] |
NASLAIN R R. Processing of non-oxide ceramic matrix composites: an overview. Advances in Science and Technology, 2006, 50:64-74.
DOI URL |
[4] |
YIN X, CHENG L, ZHANG L, et al. Fibre-reinforced multifunctional SiC matrix composite materials. International Materials Reviews, 2017, 62(3):117-172.
DOI URL |
[5] |
YANG W, ARAKI H, TANG C, et al. Single-crystal SiC nanowires with a thin carbon coating for stronger and tougher ceramic composites. Advanced Materials, 2005, 17(12):1519-1523.
DOI URL |
[6] |
HU J, DONG S, FENG Q, et al. Tailoring carbon nanotube/matrix interface to optimize mechanical properties of multiscale composites. Carbon, 2014, 69:621-625.
DOI URL |
[7] |
ZHU G, XUE Y, HU J, et al. Influence of boron nitride nanotubes on the damage evolution of SiCf/SiC composites. Journal of the European Ceramic Society, 2018, 38(14):4614-4622.
DOI URL |
[8] |
HE F, LIU Y, TIAN Z, et al. Carbon fiber/SiC composites modified SiC nanowires with improved strength and toughness. Materials Science and Engineering: A, 2018, 734:374-384.
DOI URL |
[9] |
CHU Y, LI H, FU Q, et al. Oxidation protection and behavior of C/C composites with an in situ SiC nanowire-SiC-Si/SiC-Si coating. Corrosion Science, 2013, 70:285-289.
DOI URL |
[10] |
ZHAO K, LI K, WANG Y. Rapid densification of C/SiC composite by incorporating SiC nanowires. Composites Part B: Engineering, 2013, 45(1):1583-1586.
DOI URL |
[11] | DONG R, YANG W, WU P, et al. Effect of reinforcement shape on the stress-strain behavior of aluminum reinforced with SiC nanowire. Materials & Design, 2015, 88:1015-1020. |
[12] |
THOULESS M D, EVANS A G. Effects of pull-out on the mechanical properties of ceramic-matrix composites. Acta Metallurgica, 1988, 36(3):517-522.
DOI URL |
[13] |
DE GREEF N, GORBATIKH L, GODARA A, et al. The effect of carbon nanotubes on the damage development in carbon fiber/epoxy composites. Carbon, 2011, 49(14):4650-4664.
DOI URL |
[14] |
KANG S M, KIM W J, YOON S G, et al. Effects of the PyC interface coating on SiC nanowires of SiCf/SiC composite. Journal of Nuclear Materials, 2011, 417(1/2/3):367-370.
DOI URL |
[15] |
MORSCHER G N, SINGH M, KISER J D, et al. Modeling stress-dependent matrix cracking and stress-strain behavior in 2D woven SiC fiber reinforced CVI SiC composites. Composites Science and Technology, 2007, 67(6):1009-1017.
DOI URL |
[16] |
WHITLOW T, JONES E, PRZYBYLA C. In-sit damage monitoring of a SiC/SiC ceramic matrix composite using acoustic emission and digital image correlation. Composite Structures, 2016, 158:245-251.
DOI URL |
[17] |
MORSCHER G N. Stress-dependent matrix cracking in 2D woven SiC-fiber reinforced melt-infiltrated SiC matrix composites. Composites Science and Technology, 2004, 64(9):1311-1319.
DOI URL |
[18] | ARGON A S. Fracture of composites. Treatise on Materials Science and Technology, 1972, 1:79-114. |
[1] | 安文然, 黄晶琪, 卢祥荣, 蒋佳宁, 邓龙辉, 曹学强. 热处理温度对LaMgAl11O19涂层热/力学性能的影响[J]. 无机材料学报, 2022, 37(9): 925-932. |
[2] | 张叶, 曾宇平. 自蔓延高温合成氮化硅多孔陶瓷的研究进展[J]. 无机材料学报, 2022, 37(8): 853-864. |
[3] | 夏乾, 孙是昊, 赵义亮, 张翠萍, 茹红强, 王伟, 岳新艳. 碳化硼颗粒级配对硅反应结合碳化硼复合材料结构与性能的影响[J]. 无机材料学报, 2022, 37(6): 636-642. |
[4] | 洪督, 牛亚然, 李红, 钟鑫, 郑学斌. 等离子喷涂TiC-Graphite复合涂层摩擦磨损性能[J]. 无机材料学报, 2022, 37(6): 643-650. |
[5] | 徐谱昊, 张相召, 刘桂武, 张明芬, 桂新易, 乔冠军. Al-Ti合金钎焊SiC陶瓷接头界面微观结构与力学性能[J]. 无机材料学报, 2022, 37(6): 683-690. |
[6] | 丁健翔, 张凯歌, 柳东明, 郑伟, 张培根, 孙正明. Ti3AlC2陶瓷及其衍生物Ti3C2Tx增强的Ag基电接触材料[J]. 无机材料学报, 2022, 37(5): 567-573. |
[7] | 阮景, 杨金山, 闫静怡, 游潇, 王萌萌, 胡建宝, 张翔宇, 丁玉生, 董绍明. 三维碳化硅纳米线增强碳化硅陶瓷基复合材料的电磁屏蔽性能[J]. 无机材料学报, 2022, 37(5): 579-584. |
[8] | 阮景, 杨金山, 闫静怡, 游潇, 王萌萌, 胡建宝, 张翔宇, 丁玉生, 董绍明. 碳化硅纳米线增强多孔碳化硅陶瓷基复合材料的制备[J]. 无机材料学报, 2022, 37(4): 459-466. |
[9] | 蔚海浪, 曹学强, 邓龙辉, 蒋佳宁. LaMeAl11O19/YSZ热障涂层热力学性能和热循环寿命[J]. 无机材料学报, 2022, 37(12): 1259-1266. |
[10] | 孙扬善, 杨治华, 蔡德龙, 张正义, 柳琪, 房树清, 冯良, 石丽芬, 王友乐, 贾德昌. 粉末烧结法制备α-堇青石基玻璃陶瓷的析晶动力学和性能[J]. 无机材料学报, 2022, 37(12): 1351-1357. |
[11] | 吴西士, 朱云洲, 黄庆, 黄政仁. 树脂基多孔碳孔结构对Cf/SiC复合材料连接性能的影响[J]. 无机材料学报, 2022, 37(12): 1275-1280. |
[12] | 孙鲁超, 周翠, 杜铁锋, 吴贞, 雷一明, 李家麟, 苏海军, 王京阳. 光悬浮区熔定向凝固Al2O3/Er3Al5O12和Al2O3/Yb3Al5O12共晶陶瓷的制备与性能研究[J]. 无机材料学报, 2021, 36(6): 652-658. |
[13] | 吕莎莎, 祖宇飞, 陈国清, 赵伯俊, 付雪松, 周文龙. 陶瓷颗粒增强Cr0.5MoNbWTi难熔高熵合金复合材料的制备及其力学性能[J]. 无机材料学报, 2021, 36(4): 386-392. |
[14] | 王皓轩, 刘巧沐, 王一光. 高熵过渡金属碳化物陶瓷的研究进展[J]. 无机材料学报, 2021, 36(4): 355-364. |
[15] | 金敏, 白旭东, 赵素, 张如林, 陈玉奇, 周丽娜. 坩埚下降法生长SnSe单晶及其力学性能研究[J]. 无机材料学报, 2021, 36(3): 313-318. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||