无机材料学报 ›› 2018, Vol. 33 ›› Issue (11): 1201-1207.DOI: 10.15541/jim20180061 CSTR: 32189.14.10.15541/jim20180061
所属专题: 药物载体与防护材料
郑禾, 钟近艺, 刘景全, 张哲, 崔燕, 郑永超
收稿日期:
2018-02-02
修回日期:
2018-05-03
出版日期:
2018-11-16
网络出版日期:
2018-10-20
作者简介:
郑禾(1984-), 男, 博士研究生, 助理研究员. E-mail: fhyjyzh@126.com
ZHENG He, ZHONG Jin-Yi, LIU Jing-Quan, ZHANG Zhe, CUI Yan, ZHENG Yong-Chao
Received:
2018-02-02
Revised:
2018-05-03
Published:
2018-11-16
Online:
2018-10-20
About author:
ZHENG He. E-mail: fhyjyzh@126.com
摘要:
以聚乙二醇-聚丙二醇-聚乙二醇三嵌段共聚物(P123)为模板剂, 1,3,5-三甲苯(TMB)为扩孔剂, 正硅酸乙酯(TEOS)为硅源, 采用水热合成法制备了三维连通笼状介孔泡沫(MCF)。N2吸脱附等温实验发现MCF最大孔径尺寸17.3 nm, 窗口尺寸8.2 nm, 比表面积770.3 m2/g, 孔容可达2.3 cm3/g。以MCF为载体, 考察了MCF对芥子气降解酶DhaA的吸附作用, 发现pH为6.5时, DhaA在MCF上的饱和吸附量最大, 吸附动力学满足Elovich动力学模型, DhaA在MCF孔道中的内扩散过程是吸附的限速步骤, 吸附等温线符合Sips模型。MCF吸附后DhaA的活性和构象均发生明显改变, DhaA酶活残留12.4%, 本征荧光光谱发生红移。研究结果表明:大孔径、大孔容和三维笼状孔道等结构特征使MCF有利于吸附DhaA, 静电排斥作用影响吸附过程, DhaA构象改变是造成DhaA催化活性降低的主要因素。
中图分类号:
郑禾, 钟近艺, 刘景全, 张哲, 崔燕, 郑永超. 介孔泡沫对芥子气降解酶DhaA的吸附研究[J]. 无机材料学报, 2018, 33(11): 1201-1207.
ZHENG He, ZHONG Jin-Yi, LIU Jing-Quan, ZHANG Zhe, CUI Yan, ZHENG Yong-Chao. Adsorption of Enzyme for Sulfur Mustard Decontamination by Mesocellular Foam[J]. Journal of Inorganic Materials, 2018, 33(11): 1201-1207.
Sample | BET surface area/(m2•g-1) | Pore size /nm | Window size/nm | Pore volume /(cm3•g-1) |
---|---|---|---|---|
MCF0 | 858.2 | 6.8 | 6.6 | 1.2 |
MCF1 | 538.4 | 8.5 | 6.8 | 0.9 |
MCF2 | 544.3 | 11.0 | 6.0 | 1.1 |
MCF3 | 507.3 | 12.9 | 4.9 | 1.3 |
MCF4 | 606.7 | 16.6 | 7.7 | 1.8 |
MCF5 | 770.3 | 17.3 | 8.2 | 2.3 |
MCF6 | 779.5 | 14.1 | 8.4 | 2.1 |
表1 MCF系列载体的BET测试结果
Table 1 BET results of MCF serial materials
Sample | BET surface area/(m2•g-1) | Pore size /nm | Window size/nm | Pore volume /(cm3•g-1) |
---|---|---|---|---|
MCF0 | 858.2 | 6.8 | 6.6 | 1.2 |
MCF1 | 538.4 | 8.5 | 6.8 | 0.9 |
MCF2 | 544.3 | 11.0 | 6.0 | 1.1 |
MCF3 | 507.3 | 12.9 | 4.9 | 1.3 |
MCF4 | 606.7 | 16.6 | 7.7 | 1.8 |
MCF5 | 770.3 | 17.3 | 8.2 | 2.3 |
MCF6 | 779.5 | 14.1 | 8.4 | 2.1 |
Kinetic model | Equation | Parameters | |
---|---|---|---|
Pseudo- first-order | \(\ln ({{q}_{e}}-{{q}_{t}})=ln({{q}_{e}})-{{k}_{1}}t\) | qe=79.58(mg•g-1), k1=0.25(min-1), R2=0.9300, RMSE=7.38 | |
Pseudo- second-order | \(\frac{t}{{{q}_{t}}}=\frac{1}{{{k}_{2}}q_{e}^{2}}+\frac{t}{{{q}_{e}}}\) | qe=83.41(mg•g-1), k2=0.01(mg•g-1•min-1), R2=0.9773, RMSE=4.10 | |
Elovich | \({{q}_{t}}=\frac{\ln (\alpha \beta )}{\beta }+\frac{\ln t}{\beta }\) | α=33.52(mg•g-1•min-1), β=9.99(mg•g-1), R2=0.9860, RMSE=3.18 |
表2 动力学模拟拟合结果
Table 2 Fitting of adsorption kinetic curve
Kinetic model | Equation | Parameters | |
---|---|---|---|
Pseudo- first-order | \(\ln ({{q}_{e}}-{{q}_{t}})=ln({{q}_{e}})-{{k}_{1}}t\) | qe=79.58(mg•g-1), k1=0.25(min-1), R2=0.9300, RMSE=7.38 | |
Pseudo- second-order | \(\frac{t}{{{q}_{t}}}=\frac{1}{{{k}_{2}}q_{e}^{2}}+\frac{t}{{{q}_{e}}}\) | qe=83.41(mg•g-1), k2=0.01(mg•g-1•min-1), R2=0.9773, RMSE=4.10 | |
Elovich | \({{q}_{t}}=\frac{\ln (\alpha \beta )}{\beta }+\frac{\ln t}{\beta }\) | α=33.52(mg•g-1•min-1), β=9.99(mg•g-1), R2=0.9860, RMSE=3.18 |
Isotherm model | Equation | Parameters |
---|---|---|
Langmuir | \({{q}_{e}}=\frac{{{q}_{\max }}\times {{C}_{e}}}{{{K}_{\text{l}}}+{{C}_{e}}}\) | qmax=91.49(mg•g-1), Kl=0.01(mL•mg-1), R2=0.9800, RMSE=4.68 |
Freundlich | \({{q}_{e}}={{K}_{\text{f}}}\times C_{e}^{1/n}\) | Kf=102.58(mg•g-1), n=0.11, R2=0.9436, RMSE=10.94 |
Tempkin | \({{q}_{e}}\text{=}\frac{RT}{{{b}_{T}}}\times \ln ({{A}_{\text{T}}}\times {{C}_{e}})\) | AT=175388.80 (mL•mg-1), bT=295.93 (J•mol-1), R2=0.9119, RMSE=9.8 |
Sips | \({{q}_{e}}=\frac{{{K}_{\text{s}}}C_{e}^{{{\beta }_{s}}}}{1+{{\alpha }_{\text{s}}}\times C_{e}^{{{\beta }_{s}}}}\) | Ks=236338.20(mL•mg-1), βs=1.26, αs=2612.06, R2=0.9844, RMSE=4.13 |
Redlich- Peterson | \({{q}_{e}}=\frac{{{K}_{\text{R}}}\times {{C}_{e}}}{1+{{\alpha }_{\text{R}}}\times C_{e}^{g}}\) | KR=39323.82(mL•mg-1), αR=449.02(mg-1), g=1.03, R2=0.9832, RMSE=4.28 |
表3 吸附等温线拟合结果
Table 3 Fitting of adsorption isotherm curve
Isotherm model | Equation | Parameters |
---|---|---|
Langmuir | \({{q}_{e}}=\frac{{{q}_{\max }}\times {{C}_{e}}}{{{K}_{\text{l}}}+{{C}_{e}}}\) | qmax=91.49(mg•g-1), Kl=0.01(mL•mg-1), R2=0.9800, RMSE=4.68 |
Freundlich | \({{q}_{e}}={{K}_{\text{f}}}\times C_{e}^{1/n}\) | Kf=102.58(mg•g-1), n=0.11, R2=0.9436, RMSE=10.94 |
Tempkin | \({{q}_{e}}\text{=}\frac{RT}{{{b}_{T}}}\times \ln ({{A}_{\text{T}}}\times {{C}_{e}})\) | AT=175388.80 (mL•mg-1), bT=295.93 (J•mol-1), R2=0.9119, RMSE=9.8 |
Sips | \({{q}_{e}}=\frac{{{K}_{\text{s}}}C_{e}^{{{\beta }_{s}}}}{1+{{\alpha }_{\text{s}}}\times C_{e}^{{{\beta }_{s}}}}\) | Ks=236338.20(mL•mg-1), βs=1.26, αs=2612.06, R2=0.9844, RMSE=4.13 |
Redlich- Peterson | \({{q}_{e}}=\frac{{{K}_{\text{R}}}\times {{C}_{e}}}{1+{{\alpha }_{\text{R}}}\times C_{e}^{g}}\) | KR=39323.82(mL•mg-1), αR=449.02(mg-1), g=1.03, R2=0.9832, RMSE=4.28 |
[1] | GUO N, ZHAO Y Z, ZHONG J Y, et al.Efficient expression and fermentation conditions optimization of mustard gas hydrolase.Research Progress on Chemical Problems in Public Security, 2015, 273-280. |
[2] | GUO N, DONG L, LIU J Q, et al.Catalytic hydrolysis of sulfur mustard by haloalkane dehalogenases.Environmental Chemistry, 2015, 34(7): 1363-1370. |
[3] | ZHAO Y Z, ZHONG J Y, GUO N, et al.Improvement in the thermostability and activity of DhaA against sulfur mustard by multipoint mutagenesis.Chinese Journal of Applied and Environmental Biology, 2017, 23(4): 714-718. |
[4] | ZHAO Y Z, YU W L, ZHENG H, et al.PEGylation with the thiosuccinimido butylamine linker significantly increases the stability of haloalkane dehalogenase DhaA.Biotechnology Journal, 2017, 254: 25-33. |
[5] | NAGATA Y, OHTSUBO Y, TSUDA M.Properties and biotechnological applications of natural and engineered haloalkane dehalogenase.Applied Microbiology and Biotechnology, 2015, 99(23): 9865-9881. |
[6] | STEPANKOVA V, DAMBORSKY J, CHALOUPKOVA R.Organic co-solvents affect activity, stability and enantioselectivity of haloalkane dehalogenases.Biotechnology Journal, 2013, 8: 633-752. |
[7] | DIAZ J F, BULKUS K J.Enzyme immobilization in MCM-41 molecular sieve.Journal of Molecular Catalysis B: Enzymatic, 1996, 2(2/3): 115-126. |
[8] | TAKIMOTO A, SHIOMI T, INO K, et al.Encapsulation of cellulase with mesoporous silica (SBA-15).Microporous and Mesoporous Materials, 2008, 116(1): 601-606. |
[9] | VINU A, GOKULAKRISHNAN N, BALASUBRAMANIAN V V, et al.Three-dimensional ultralarge-pore Ia3d mesoporous silica with various pore diameters and their application in biomolecule immobilization.Chemistry-A European Journal, 2008, 14(36): 11529-11538. |
[10] | WEBER E, SIRIM D, SCHREIBER T, et al.Immobilization of P450 BM-3 monooxygenase on mesoporous molecular sieves with different pore diameters.Journal of Molecular Catalysis B: Enzymatic, 2010, 64(1/2): 29-37. |
[11] | AGUILA S, VAZQUEZ-DUHALT R, COVARRUBIAS C, et al.Enhancing oxidation activity and stability of iso-1-cytochrome c and chloroperoxidase by immobilization in nanostructured supports.Journal of Molecular Catalysis B: Enzymatic, 2011, 70(3/4): 81-87. |
[12] | WASHMON-KRIEL L, JIMENEZ V L, BALKUS K J.Cytochrome c immobilization into mesoporous molecular sieves.Journal of Molecular Catalysis B: Enzymatic, 2000, 10(5): 453-469. |
[13] | SERRA E, MAYORAL A, SAKAMOTO Y, et al.Immobilization of lipase in ordered mesoporous materials: effect of textural and structural parameters.Microporous and Mesoporous Materials, 2008, 114(1): 201-213. |
[14] | SCHMIDT-WINKEL P, LUKENS W W, ZHAO D Y, et al.Mesocellular siliceous foams with uniformly sized cell and windows.Journal of the American Chemical Society, 1999, 121(1): 254-255. |
[15] | IWASAKI I, UTSUMI S, HAGINO K, et al.A new spectrophotometric method for the determination of small amounts of chloride using the mercuric thiocyanate method.Bulletin of the Chemical Society of Japan, 1956, 29(8): 860-864. |
[16] | 赵渊中. 脱卤酶对芥子气的催化活性和稳定性研究. 北京: 防化研究院硕士学位论文, 2016. |
[17] | ROSENHOLM J M, CZURYSZKIEWICZ T, KLEITZ F, et al.On the nature of bronsted acidic groups on native and functionalized mesoporous siliceous SBA-15 as studied by benzylamine adsorption from solution.Langmuir, 2007, 23(8): 4315-4323. |
[18] | LAGERGREN S, SVENSKA B K. On the theory of so-called adsorption of materials. Swedish Academy of Science, 1898, 24: 1-13. |
[19] | HO Y S, MCKAY G.Pseudo-second order model for sorption processes.Process Biochemistry, 1999, 34(5): 451-465. |
[20] | AHARONI C, UNGARISH M.Kinetics of activated chemisorptions. Part I: The non-Elvichian part of the isotherm. Journal of Chemical Society Faraday Transactions, 1976, 72: 265-268. |
[21] | MARTINS A C, PEZOTI O, CAZRTTA A L, et al.Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: kinetic and equilibrium studies.Chemical Engineering Journal, 2015, 260: 291-299. |
[22] | WEBER W J, MORRIS J.Kinetics of adsorption on carbon from solution.ASCE Sanitary Engineering Division Journal, 1963, 1(2): 1-2. |
[23] | LANGMUIR I.The constitution and fundamental properties of solids and liquids.Journal of the American Chemical Society, 1916, 38(11): 2221-2295 |
[24] | FREUNDLICH H M F. Over the adsorption in solution.Journal of Physical Chemistry, 1906, 57: 385-471. |
[25] | TEMPKIN M I, PYZHEV V.Kinetics of ammonia synthesis on promoted iron catalyst.Acta Physico-Chimica USSR, 1940, 12: 327-356. |
[26] | SIPS R.Combined form of Langmuir and Freundlich equations.Journal of Chemical Physics, 1948, 16: 490-495. |
[27] | REDLICH O, PETERSON D L.A useful adsorption isotherm.Journal of Physical Chemistry, 1959, 63(6): 1024-1026. |
[28] | FOO K Y, HAMEED B H.Insights into the modeling of adsorption isotherm systems.Chemical Engineering Journal, 2010, 156(1): 2-10. |
[29] | ZIVKOVIC L T I, ZIVKOVIC L S, BABIC B M, et al. Immobilization of Candida rugosa lipase by adsorption onto biosafe meso/ macroporous silica and zirconia.Biological Engineering Journal, 2015, 93: 73-83. |
[30] | DREIFKE M, FRIED D I, BRIELER F J, et al.Kinetic investigations of 6-phosphogluconate dehydrogenase confined in mesoporous silica.Journal of Molecular Catalysis B: Enzymatic, 2016, 132: 5-15. |
[1] | 吴光宇, 舒松, 张洪伟, 李建军. 接枝内酯基活性炭增强苯乙烯吸附性能研究[J]. 无机材料学报, 2024, 39(4): 390-398. |
[2] | 谢天, 宋二红. 弹性应变对C、H、O在过渡金属氧化物表面吸附的影响[J]. 无机材料学报, 2024, 39(11): 1292-1300. |
[3] | 晁少飞, 薛艳辉, 吴琼, 伍复发, MUHAMMAD Sufyan Javed, 张伟. MXene异质结Ti-O-H-O电子快速通道促进高效率储钾[J]. 无机材料学报, 2024, 39(11): 1212-1220. |
[4] | 马晓森, 张丽晨, 刘砚超, 汪全华, 郑家军, 李瑞丰. 13X@SiO2合成及其甲苯吸附性能[J]. 无机材料学报, 2023, 38(5): 537-543. |
[5] | 郭春霞, 陈伟东, 闫淑芳, 赵学平, 杨傲, 马文. 埃洛石纳米管负载锆氧化物吸附水中砷的研究[J]. 无机材料学报, 2023, 38(5): 529-536. |
[6] | 王世怡, 冯爱虎, 李晓燕, 于云. Fe3O4负载Ti3C2Tx对Pb(II)的吸附性能研究[J]. 无机材料学报, 2023, 38(5): 521-528. |
[7] | 于业帆, 徐玲, 倪忠斌, 施冬健, 陈明清. 普鲁士蓝/生物炭材料的制备及其氨氮吸附机理[J]. 无机材料学报, 2023, 38(2): 205-212. |
[8] | 凌洁, 周安宁, 王文珍, 贾忻宇, 马梦丹. Cu/Mg比对Cu/Mg-MOF-74的CO2吸附性能的影响[J]. 无机材料学报, 2023, 38(12): 1379-1386. |
[9] | 汤亚, 孙盛睿, 樊佳, 杨庆峰, 董满江, 寇佳慧, 刘阳桥. 粉煤灰衍生水合硅酸钙PEI改性及吸附去除Cu(II)与催化降解有机污染物[J]. 无机材料学报, 2023, 38(11): 1281-1291. |
[10] | 戴洁燕, 冯爱虎, 米乐, 于洋, 崔苑苑, 于云. NaY沸石分子吸附涂层对典型空间污染物的吸附机制研究[J]. 无机材料学报, 2023, 38(10): 1237-1244. |
[11] | 王红宁, 黄丽, 清江, 马腾洲, 黄维秋, 陈若愚. 有机-无机氧化硅空心球的合成及VOCs吸附应用[J]. 无机材料学报, 2022, 37(9): 991-1000. |
[12] | 刘城, 赵倩, 牟志伟, 雷洁红, 段涛. 新型铋基SiOCNF复合膜对放射性气态碘的吸附性能[J]. 无机材料学报, 2022, 37(10): 1043-1050. |
[13] | 周帆, 毕辉, 黄富强. 用稻壳制备亚甲基蓝高吸附容量的超高比表面积活性炭[J]. 无机材料学报, 2021, 36(8): 893-903. |
[14] | 余祥坤, 刘坤, 李志鹏, 赵雨露, 沈锦优, 茆平, 孙爱武, 蒋金龙. 铜/凹凸棒石复合材料高效吸附放射性碘离子性能[J]. 无机材料学报, 2021, 36(8): 856-864. |
[15] | 苏莉, 杨建平, 兰悦, 王连军, 江莞. 纳米铁颗粒及其复合材料的界面设计及环境修复应用[J]. 无机材料学报, 2021, 36(6): 561-569. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||