Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (5): 573-580.DOI: 10.15541/jim20190266
Special Issue: 环境与催化材料论文精选; 【虚拟专辑】化学反应催化剂(2020~2021)
Previous Articles Next Articles
HUANG Xiubing1,WANG Peng1,TAO Jinzhang2,XI Zuoshuai1
Received:
2019-05-31
Revised:
2019-07-25
Published:
2020-05-20
Online:
2019-09-04
Supported by:
CLC Number:
HUANG Xiubing, WANG Peng, TAO Jinzhang, XI Zuoshuai. CeO2 Modified Mn-Fe-O Composites and their Catalytic Performance for NH3-SCR of NO[J]. Journal of Inorganic Materials, 2020, 35(5): 573-580.
Sample | Surface area /(m2·g-1) | Pore volume /(cm3·g-1) | Average pore size/nm |
---|---|---|---|
Mn-Fe-O | 148.08 | 0.302 | 8.92 |
Ce(0.01)/Mn-Fe-O | 145.42 | 0.290 | 7.82 |
Ce(0.05)/Mn-Fe-O | 142.39 | 0.265 | 7.45 |
Ce(0.1)/Mn-Fe-O | 142.31 | 0.262 | 7.36 |
Ce(0.3)/Mn-Fe-O | 142.71 | 0.255 | 7.14 |
Table 1 Structure properties of Ce(x)/Mn-Fe-O
Sample | Surface area /(m2·g-1) | Pore volume /(cm3·g-1) | Average pore size/nm |
---|---|---|---|
Mn-Fe-O | 148.08 | 0.302 | 8.92 |
Ce(0.01)/Mn-Fe-O | 145.42 | 0.290 | 7.82 |
Ce(0.05)/Mn-Fe-O | 142.39 | 0.265 | 7.45 |
Ce(0.1)/Mn-Fe-O | 142.31 | 0.262 | 7.36 |
Ce(0.3)/Mn-Fe-O | 142.71 | 0.255 | 7.14 |
Sample | Ce : Mn : Fe molar ratio | Surface atomic content/% | ||||||
---|---|---|---|---|---|---|---|---|
Fe2+ | Fe3+ | Mn2+ | Mn3+ | Mn4+ | Ce3+ | Ce4+ | ||
Mn-Fe-O | 0 : 1.00 : 2.02 | 39 | 61 | 24 | 41 | 35 | - | - |
Ce(0.01)/Mn-Fe-O | 0.01 : 1 : 2.02 | 35 | 65 | 20 | 42 | 38 | 19 | 81 |
Ce(0.05)/Mn-Fe-O | 0.08 : 1 : 2.02 | 29 | 71 | 20 | 45 | 35 | 18 | 82 |
Ce(0.1)/Mn-Fe-O | 0.17 : 1 : 2.02 | 30 | 70 | 17 | 45 | 38 | 19 | 81 |
Ce(0.3)/Mn-Fe-O | 0.43 : 1 : 2.02 | 32 | 68 | 26 | 43 | 31 | 17 | 83 |
Table 2 Surface atomic content of Ce(x)/Mn-Fe-O composites
Sample | Ce : Mn : Fe molar ratio | Surface atomic content/% | ||||||
---|---|---|---|---|---|---|---|---|
Fe2+ | Fe3+ | Mn2+ | Mn3+ | Mn4+ | Ce3+ | Ce4+ | ||
Mn-Fe-O | 0 : 1.00 : 2.02 | 39 | 61 | 24 | 41 | 35 | - | - |
Ce(0.01)/Mn-Fe-O | 0.01 : 1 : 2.02 | 35 | 65 | 20 | 42 | 38 | 19 | 81 |
Ce(0.05)/Mn-Fe-O | 0.08 : 1 : 2.02 | 29 | 71 | 20 | 45 | 35 | 18 | 82 |
Ce(0.1)/Mn-Fe-O | 0.17 : 1 : 2.02 | 30 | 70 | 17 | 45 | 38 | 19 | 81 |
Ce(0.3)/Mn-Fe-O | 0.43 : 1 : 2.02 | 32 | 68 | 26 | 43 | 31 | 17 | 83 |
[1] | ZHANG H L, LONG H M, LI J X , et al. Research progress in iron-based catalysts for the selective catalytic reduction of NOx by NH3. Chinese J. Inorg. Chem., 2019,35(5):753-768. |
[2] |
ZHENG Y J, JENSEN A D, JOHNSSON J E . Deactivation of V2O5-WO3-TiO2 SCR catalyst at a biomass-fired combined heat and power plant. Appl. Catal. B-Environ., 2005,60(3/4):253-264.
DOI URL PMID |
[3] | JI J H, CHANG H Z, MA L , et al. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—a review. Catal. Today, 2011,175(1):147-156. |
[4] | CHEN J, ZHENG Y Y, ZHANG Y B , et al. Preparation of MnO2/ MWCNTs catalysts by a redox method and their activity in low- temperature SCR. Chinese J. Inorg. Chem., 2016,31(12):1347-1354. |
[5] | YOU X C, SHENG Z Y, YU D Y , et al. Influence of Mn/Ce ratio on the physicochemical properties and catalytic performance of graphene supported MnOx-CeO2 oxides for NH3-SCR at low temperature. Appl. Surf. Sci., 2017,423:845-854. |
[6] | CHEN H P, QI X, LIANG Y H , et al. Effect of Fe reduced-modifcation on TiO2 supported Fe-Mn catalyst for NO removal by NH3 at low temperature. React. Kinet. Mech. Catal., 2019,126(1):327-339. |
[7] | GONG P J, XIE J L, FANG D , et al. Effects of surface physicochemical properties on NH3-SCR activity of MnO2 catalysts with different crystal structures. Chinese J. Catal., 2017,38(11):1925-1934. |
[8] | WANG F M, SHEN B X, ZHU S W , et al. Promotion of Fe and Co doped Mn-Ce/TiO2 catalysts for low temperature NH3-SCR with SO2 tolerance. Fuel, 2019,249:54-60. |
[9] | FANG D, HE F, LIU X Q , et al. Low temperature NH3-SCR of NO over an unexpected Mn-based catalyst: Promotional effect of Mg doping. Appl. Surf. Sci., 2018,427(B):45-55. |
[10] | YANG Y R, WANG M H, TAO Z L , et al. Mesoporous Mn-Ti amorphous oxides: a robust low-temperature NH3-SCR catalyst. Catal. Sci. Technol., 2018,8(24):6396-6406. |
[11] | XIONG Z B, WU C, HU Q , et al. Promotional effect of microwave hydrothermal treatment on the low-temperature NH3-SCR activity over iron-based catalyst. Chem. Eng. J., 2016,286:459-466. |
[12] | DU T Y, QU H X, LIU Q , et al. Synthesis, activity and hydrophobicity of Fe-ZSM-5@silicalite-1 for NH3-SCR. Chem. Eng. J., 2015,262:1199-1207. |
[13] | GAO F, KOLLAR M, KUKKADAPU R K , et al. Fe/SSZ-13 as an NH3-SCR catalyst: A reaction kinetics and FTIR/Mössbauer spectroscopic study. Appl. Catal. B-Environ., 2015,164:407-419. |
[14] | LIU Z M, SU H, CHEN B H , et al. Activity enhancement of WO3 modified Fe2O3 catalyst for the selective catalytic reduction of NOx by NH3. Chem. Eng. J., 2016,299:255-262. |
[15] |
LIU F D, SHAN W P, LIAN Z H , et al. The smart surface modification of Fe2O3 by WOx for significantly promoting the selective catalytic reduction of NOx with NH3. Appl. Catal. B-Environ., 2018,230:165-176.
DOI URL |
[16] | HUANG J, TONG Z, HUANG Y , et al. Selective catalytic reduction of NO with NH3 at low temperatures over iron and manganese oxides supported on mesoporous silica. Appl. Catal. B-Environ., 2008,78(3/4):309-314. |
[17] |
YANG S J, XIONG S C, LIAO Y , et al. Mechanism of N2O formation during the low-temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel. Environ. Sci. Technol., 2014,48(17):10354-10362.
DOI URL PMID |
[18] | CHEN Z H, WANG F R, LI H , et al. Low-temperature selective catalytic reduction of NOx with NH3 over Fe-Mn mixed-oxide catalysts containing Fe3Mn3O8 phase. Int. Eng. Chem. Res., 2012,51(1):202-212. |
[19] | XIONG S C, LIAO Y, XIAO X , et al. The mechanism of the effect of H2O on the low temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel. Catal. Sci. Technol., 2015,5(4):2132-2140. |
[20] | JIANG B Q, WU Z B, LIU Y , et al. DRIFT Study of the SO2 effect on low-temperature SCR reaction over Fe-Mn/TiO2. J. Phys. Chem. C, 2010,114(11):4961-4965. |
[21] | JIN R B, LIU Y, WU Z B , et al. Relationship between SO2 poisoning effects and reaction temperature for selective catalytic reduction of NO over Mn-Ce/TiO2 catalyst. Catal. Today, 2010,153(3/4):84-89. |
[22] |
TANG C J, ZHANG H L, DONG L . Ceria-based catalysts for low- temperature selective catalytic reduction of NO with NH3. Catal. Sci. Technol., 2016,6(5):1248-1264.
DOI URL PMID |
[23] | LI J, PAN L, WANG J T , et al. Low-temperature removal of NO by spherical activated carbon loaded with MnOx-CeO2 and melamine. Chinese J. Inorg. Mater., 2016,31(11):1205-1211. |
[24] | ZHAO K, HAN W L, LU G X , et al. Promotion of redox and stability features of doped Ce-W-Ti for NH3-SCR reaction over a wide temperature range. Appl. Surf. Sci., 2016,379:316-322. |
[25] | MA Z R, WENG D, WU X D , et al. A novel Nb-Ce/WOx-TiO2 catalyst with high NH3-SCR activity and stability. Catal. Commun., 2012,27:97-100. |
[26] |
CHANG H Z, CHEN X Y, LI J H , et al. Improvement of activity and SO2 tolerance of Sn-modified MnOx-CeO2 catalysts for NH3- SCR at low temperatures. Environ. Sci. Technol., 2013,47(10):5294-5301.
DOI URL PMID |
[27] | HUANG X B, LIU L P, GAO H Y , et al. Hierarchically nanostructured MnCo2O4 as active catalysts for the synthesis of N-benzylideneaniline from benzyl alcohol and aniline. Green Chem., 2017,19(3):769-777. |
[28] | FRANCE L J, YANG Q, LI W , et al. Ceria modified FeMnOx —Enhanced performance and sulphur resistance for low-temperature SCR of NOx. Appl. Catal. B-Environ., 2017,206:203-215. |
[29] | SUN M, LAN B, YU L , et al. Manganese oxides with different crystalline structures: Facile hydrothermal synthesis and catalytic activities. Mater. Lett., 2012,86:18-20. |
[30] | HUANG X B, ZHENG H Y, LU G L , et al. Enhanced water splitting electrocatalysis over MnCo2O4 via introduction of suitable Ce content. ACS Sustainable Chem. Eng., 2019,7(1):1169-1177. |
[31] | HUANG X B, WANG P, ZHANG H , et al. CeO2-δ-modified CuFe2O4 with enhanced oxygen transfer as efficient catalysts for selective oxidation of fluorene under mild conditions. Eur. J. Inorg. Chem., 2019,2019(1):91-97. |
[32] | XU L, LI X S, CROCKER M , et al. A study of the mechanism of low-temperature SCR of NO with NH3 on MnOx/CeO2. J. Mol. Catal. A-Chem., 2013,378:82-90. |
[1] | CAI Heqing, HAN Lu, YANG Songsong, XUE Xinyu, ZHANG Kou, SUN Zhicheng, LIU Ruping, HU Kun, WEI Yan. Fe3O4-DMSA-PEI Magnetic Nanoparticles with Small Particle Size: Preparation and Gene Loading [J]. Journal of Inorganic Materials, 2024, 39(5): 517-524. |
[2] | LI Qianyuan, LI Jiwei, ZHANG Yuhan, LIU Yankang, MENG Yang, CHU Yu, ZHU Yijia, XU Nuoyan, ZHU Liang, ZHANG Chuanxiang, TAO Haijun. Enhanced Photovoltaic Performance of Perovskite Solar Cells by PbTiO3 Modification and Polarization Treatment [J]. Journal of Inorganic Materials, 2024, 39(11): 1205-1211. |
[3] | ZHOU Yunkai, DIAO Yaqi, WANG Minglei, ZHANG Yanhui, WANG Limin. First-principles Calculation Study of the Oxidation Resistance of PANI Modified Ti3C2(OH)2 [J]. Journal of Inorganic Materials, 2024, 39(10): 1151-1158. |
[4] | MA Xiaosen, ZHANG Lichen, LIU Yanchao, WANG Quanhua, ZHENG Jiajun, LI Ruifeng. 13X@SiO2: Synthesis and Toluene Adsorption [J]. Journal of Inorganic Materials, 2023, 38(5): 537-543. |
[5] | JIAO Boxin, LIU Xingchong, QUAN Ziwei, PENG Yongshan, ZHOU Ruonan, LI Haimin. Performance of Perovskite solar cells Doped with L-arginine [J]. Journal of Inorganic Materials, 2022, 37(6): 669-675. |
[6] | XIAO Meixia, LI Miaomiao, SONG Erhong, SONG Haiyang, LI Zhao, BI Jiaying. Halogenated Ti3C2 MXene as High Capacity Electrode Material for Li-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(6): 660-668. |
[7] | DONG Shurui, ZHAO Di, ZHAO Jing, JIN Wanqin. Effect of Ionized Amino Acid on the Water-selective Permeation through Graphene Oxide Membrane in Pervaporation Process [J]. Journal of Inorganic Materials, 2022, 37(4): 387-394. |
[8] | ZHOU Ganghuai, LIU Yao, SHI Yuan, LIU Shaojun. Slurry Preparation and Stereolithography for Activated Alumina Catalyst Carrier [J]. Journal of Inorganic Materials, 2022, 37(3): 297-302. |
[9] | FU Yukun, ZENG Min, RAO Xianfa, ZHONG Shengwen, ZHANG Huijuan, YAO Wenli. Microwave-assisted Synthesis and Co, Al Co-modification of Ni-rich LiNi0.8Mn0.2O2 Materials for Li-ion Battery Electrode [J]. Journal of Inorganic Materials, 2021, 36(7): 718-724. |
[10] | DONG Shaojie,WANG Xudong,SHEN Steve Guofang,WANG Xiaohong,LIN Kaili. Research Progress on Functional Modifications and Applications of Bioceramic Scaffolds [J]. Journal of Inorganic Materials, 2020, 35(8): 867-881. |
[11] | FAN Jia-Feng,ZHANG Xiao-Feng,ZHOU Ke-Song,LIU Min,DENG Chang-Guang,DENG Chun-Ming,NIU Shao-Peng,DENG Zi-Qian. Influence of Al-modification on CMAS Corrosion Resistance of PS-PVD 7YSZ Thermal Barrier Coatings [J]. Journal of Inorganic Materials, 2019, 34(9): 938-946. |
[12] | LI Hao-Geng,GU Hong-Yu,ZHANG Yu-Zhi,SONG Li-Xin,WU Ling-Nan,QI Zhen-Yi,ZHANG Tao. Surface Protection of Polymer Materials from Atomic Oxygen: a Review [J]. Journal of Inorganic Materials, 2019, 34(7): 685-693. |
[13] | LI Dong, LEI Chao, LAI Hua, LIU Xiao-Lin, YAO Wen-Li, LIANG Tong-Xiang, ZHONG Sheng-Wen. Recent Advancements in Interface between Cathode and Garnet Solid Electrolyte for All Solid State Li-ion Batteries [J]. Journal of Inorganic Materials, 2019, 34(7): 694-702. |
[14] | Dun WU, Shuai QIN, Chun-Lin LIU, Bi-Jun FANG, Zheng CAO, Jun-Feng CHENG. Surface Modification by Stearic Acid on Property of PLZT Piezoelectric Ceramics Prepared via Powder Injection Molding [J]. Journal of Inorganic Materials, 2019, 34(5): 535-540. |
[15] | YANG Zhi-Bin, YUE Tong-Lian, YU Xiang-Nan, WU Miao-Miao. Electrocatalytic Activity of Cobalt Doped Ceria Nanoparticles [J]. Journal of Inorganic Materials, 2018, 33(8): 845-853. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||