Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (4): 397-404.DOI: 10.15541/jim20240370
• RESEARCH ARTICLE • Previous Articles Next Articles
JIA Xianghua(), ZHANG Huixia, LIU Yanfeng, ZUO Guihong
Received:
2024-08-12
Revised:
2024-11-05
Published:
2025-04-20
Online:
2024-12-11
About author:
JIA Xianghua (1981-), female, associate professor. E-mail: jiaxianghua2000@163.com
Supported by:
CLC Number:
JIA Xianghua, ZHANG Huixia, LIU Yanfeng, ZUO Guihong. Cu2O/Cu Hollow Spherical Heterojunction Photocatalysts Prepared by Wet Chemical Approach[J]. Journal of Inorganic Materials, 2025, 40(4): 397-404.
Fig. 2 SEM images of the pure Cu2O and Cu2O/Cu samples (a) Pure Cu2O; (b-f) Cu2O/Cu with 50 mL addition of NaBH4 at concentration of (b) 0.0067, (c) 0.0080, (d) 0.0100, (e) 0.0130, and (f) 0.0200 mol/L
Sample | Specific surface area/(cm2·g-1) | Average pore diameter/nm | Pore volume/ (cm3·g-1) |
---|---|---|---|
Pure Cu2O | 34.23 | 85.23 | 0.286 |
Cu2O/Cu-0.0067 | 37.11 | 55.34 | 0.279 |
Cu2O/Cu-0.0080 | 39.01 | 34.24 | 0.274 |
Cu2O/Cu-0.0100 | 41.19 | 32.56 | 0.263 |
Cu2O/Cu-0.0130 | 64.45 | 30.26 | 0.246 |
Cu2O/Cu-0.0200 | 88.79 | 26.35 | 0.221 |
Table 1 Specific surface area, average pore diameter and pore volume of the pure Cu2O and Cu2O/Cu samples
Sample | Specific surface area/(cm2·g-1) | Average pore diameter/nm | Pore volume/ (cm3·g-1) |
---|---|---|---|
Pure Cu2O | 34.23 | 85.23 | 0.286 |
Cu2O/Cu-0.0067 | 37.11 | 55.34 | 0.279 |
Cu2O/Cu-0.0080 | 39.01 | 34.24 | 0.274 |
Cu2O/Cu-0.0100 | 41.19 | 32.56 | 0.263 |
Cu2O/Cu-0.0130 | 64.45 | 30.26 | 0.246 |
Cu2O/Cu-0.0200 | 88.79 | 26.35 | 0.221 |
Fig. 8 Catalytic performance of the pure Cu2O and Cu2O/Cu catalysts for MO and ENR (a) Catalytic degradation curves of the pure Cu2O and Cu2O/Cu catalysts for MO; (b) Fitting plots of pseudo-first-order kinetics; (c) Absorption spectra of Cu2O/Cu-0.0080 catalyst for ENR
Fig. 10 Time-dependent surface temperature changes of the pure Cu2O and Cu2O/Cu samples (a) Time-dependent surface temperature under irradiation with inset showing infrared thermal image of Cu2O/Cu-0.0130 sample irradiated for 8 min; (b) Time-dependent surface temperature during photocatalysis with inset showing infrared thermal image of Cu2O/Cu-0.0130 sample photocatalytic degradation for 30 min
[1] | SINGHA A, KAISHYOP J, KHAN T S, et al. Visible-light-driven toluene oxidation to benzaldehyde over WO3 nanostructures. ACS Applied Nano Materials, 2023, 6(23):21818. |
[2] | JIAN L, ZHAO H, DONG Y M, et al. Graphite carbon ring modified carbon nitride with a strong built-in electric field for high photocatalysis-self-Fenton performance. Catalysis Science & Technology, 2022, 12(24):7379. |
[3] | TOE C Y, LAMERS M, DITTRICH T, et al. Facet-dependent carrier dynamics of cuprous oxide regulating the photocatalytic hydrogen generation. Materials Advances, 2022, 3(4): 2200. |
[4] | ONG W J, TAN L L, CHAI S P, et al. Highly reactive {001} facets of TiO2-based composites: synthesis, formation mechanism and characterization. Nanoscale, 2014, 6(4): 1946. |
[5] | YANG C, LIU Z L, SU Z L, et al. Combined effect of oxygen vacancies and mesopore sizes in ZnO/SiO2 adsorbents on boosting the H2S removal efficiency in moist conditions. Advanced Functional Materials, 2024, 34(49):2409214. |
[6] | LI W J, DA P M, ZHANG Y Y, et al. WO3 nanoflakes for enhanced photoelectrochemical conversion. ACS Nano, 2014, 8(11):11770. |
[7] | BANIAMERIAN H, SHOKROLLAHZADEH S, SAFAVI M, et al. Visible-light-activated Fe2O3-TiO2 nanoparticles enhance biofouling resistance of polyethersulfone ultrafiltration membranes against marine algae Chlorella vulgaris. Scientific Reports, 2024, 14: 24831. |
[8] | XIONG L K, ZHANG X, CHEN L, et al. Geometric modulation of local CO flux in Ag@Cu2O nanoreactors for steering the CO2RR pathway toward high-efficacy methane production. Advanced Materials, 2021, 33(32):2101741. |
[9] | LIU W Q, BAI P Y, WEI S L, et al. Electron-rich Cu0-Cu2O heterogeneous interface constructed via controllable electrochemical reconstruction for a single CO2 deep-reduction product ethylene. Applied Catalysis B: Environment and Energy, 2024, 348: 123831. |
[10] | KIM H E, WI D H, LEE J S, et al. Photoelectrochemical nitrate and nitrite reduction using Cu2O photocathodes. ACS Energy Letters, 2024, 9(5): 1993. |
[11] | WU E T, HUANG M H. Photocatalytic oxidative amine coupling with 4-nitrophenylacetylene-modified Cu2O polyhedra. ACS Catalysis, 2023, 13(22):14746. |
[12] | CHEN B H, KUMAR G, WEI Y J, et al. Experimental revelation of surface and bulk lattices in faceted Cu2O crystals. Small, 2023, 19(44):2303491. |
[13] | ZHANG Y Y, CHEN Y X, WANG X W, et al. Low-coordinated copper facilitates the *CH2CO affinity at enhanced rectifying interface of Cu/Cu2O for efficient CO2-to-multicarbon alcohols conversion. Nature Communications, 2024, 15: 5172. |
[14] | ZHANG Z H, SONG R, YU Z Y, et al. Crystal-plane effect of Cu2O templates on compositions, structures and catalytic performance of Ag/Cu2O nanocomposites. CrystEngComm, 2019, 21(12): 2002. |
[15] | ZHU M Y, CHENG Y K, LUO Q, et al. A review of synthetic approaches to hollow nanostructures. Materials Chemistry Frontiers, 2021, 5(6):2552. |
[16] |
ZHANG F, LIU T Y, LI M Y, et al. Multiscale pore network boosts capacitance of carbon electrodes for ultrafast charging. Nano Letters, 2017, 17(5):3097.
DOI PMID |
[17] | POOLAKKANDY R R, MENAMPARAMBATH M M. Soft- template-assisted synthesis: a promising approach for the fabrication of transition metal oxides. Nanoscale Advances, 2020, 2(11):5015. |
[18] |
CUI L L, WANG C C, ZHANG H W, et al. Facile one-step dialysis strategy for fabrication of hollow complex nanoparticles. Chemical Communications, 2019, 55(62):9120.
DOI PMID |
[19] | FANG Y J, YU X Y, LOU X W. Formation of hierarchical Cu-doped CoSe2 microboxes via sequential ion exchange for high-performance sodium-ion batteries. Advanced Materials, 2018, 30(21):1706668. |
[20] | DONG Y L, TAO F F, WANG L X, et al. One-pot preparation of hierarchical Cu2O hollow spheres for improved visible-light photocatalytic properties. RSC Advances, 2020, 10(38):22387. |
[21] | LV T T, XING H Z, YANG H M, et al. Rapid synthesis of Cu2O hollow spheres at low temperature and their catalytic performance for the decomposition of ammonium perchlorate. CrystEngComm, 2021, 23(45):7985. |
[22] | LIU B Q, YAO X, ZHANG Z J, et al. Synthesis of Cu2O nanostructures with tunable crystal facets for electrochemical CO2 reduction to alcohols. ACS Applied Materials & Interfaces, 2021, 13(33):39165. |
[23] | ZHOU B, LIU Z G, ZHANG H J, et al. One-pot synthesis of Cu2O/Cu self-assembled hollow nanospheres with enhanced photocatalytic performance. Journal of Nanomaterials, 2014, 2014: 291964. |
[24] | CHANG J Y, BAO Q W, ZHANG C, et al. Rapid preparation and photocatalytic properties of octahedral Cu2O@Cu powders. Advanced Powder Technology, 2021, 32(1):144. |
[25] |
CHANG Y, TEO J J, ZENG H C. Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres. Langmuir, 2005, 21(3):1074.
PMID |
[26] | ZHU S C, CHEN Z Y, LIU Z P, et al. Thermodynamics and catalytic activity of the reduced Cu on a Cu2O surface from machine learning atomic simulation. ACS Materials Letters, 2024, 6(8):3690. |
[27] | YUE Y M, ZHANG P X, WANG W, et al. Enhanced dark adsorption and visible-light-driven photocatalytic properties of narrower-band-gap Cu2S decorated Cu2O nanocomposites for efficient removal of organic pollutants. Journal of Hazardous Materials, 2020, 384: 121302. |
[28] | BAO Y C, CHEN K Z. A novel Z-scheme visible light driven Cu2O/Cu/g-C3N4 photocatalyst using metallic copper as a charge transfer mediator. Molecular Catalysis, 2017, 432: 187. |
[29] | SARAEV A A, KURENKOVA A Y, MISHCHENKO D D, et al. Cu/TiO2 photocatalysts for CO2 reduction: structure and evolution of the cocatalyst active form. Transactions of Tianjin University, 2024, 30(2):140. |
[30] | XU B G, WANG B, ZHANG H Y, et al. Z-scheme Cu2O nanoparticle/graphite carbon nitride nanosheet heterojunctions for photocatalytic hydrogen evolution. ACS Applied Nano Materials, 2022, 5(6):8475. |
[31] | LI Z J, WANG M Z, JIA Y Y, et al. CeO2/Cu2O/Cu tandem interfaces for efficient water-gas shift reaction catalysis. ACS Applied Materials & Interfaces, 2023, 15(26):31584. |
[32] | LI D Y, ZAN J, WU L P, et al. Heterojunction tuning and catalytic efficiency of g-C3N4-Cu2O with glutamate. Industrial & Engineering Chemistry Research, 2019, 58(10):4000. |
[33] | ZHANG Z J, WANG W Z, GAO E P, et al. Photocatalysis coupled with thermal effect induced by SPR on Ag-loaded Bi2WO6 with enhanced photocatalytic activity. The Journal of Physical Chemistry C, 2012, 116(49):25898. |
[34] | WANG Y B, ZHAO X, CAO D, et al. Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol A by single-atom dispersed Ag mesoporous g-C3N4 hybrid. Applied Catalysis B: Environmental, 2017, 211: 79. |
[35] | MEI W D, LI D Y, XU H M, et al. Effect of electronic migration of MIL-53(Fe) on the activation of peroxymonosulfate under visible light. Chemical Physics Letters, 2018, 706: 694. |
[36] | ZHANG H, DIAO J F, LIU Y H, et al. In situ-grown Cu dendrites plasmonically enhance electrocatalytic hydrogen evolution on facet-engineered Cu2O. Advanced Materials, 2023, 35(42):2305742. |
[1] | MA Binbin, ZHONG Wanling, HAN Jian, CHEN Liangyu, SUN Jingjing, LEI Caixia. ZIF-8/TiO2 Composite Mesocrystals: Preparation and Photocatalytic Activity [J]. Journal of Inorganic Materials, 2024, 39(8): 937-944. |
[2] | CAO Qingqing, CHEN Xiangyu, WU Jianhao, WANG Xiaozhuo, WANG Yixuan, WANG Yuhan, LI Chunyan, RU Fei, LI Lan, CHEN Zhi. Visible-light Photodegradation of Tetracycline Hydrochloride on Self-sensitive Carbon-nitride Microspheres Enhanced by SiO2 [J]. Journal of Inorganic Materials, 2024, 39(7): 787-792. |
[3] | WANG Zhaoyang, QIN Peng, JIANG Yin, FENG Xiaobo, YANG Peizhi, HUANG Fuqiang. Sandwich Structured Ru@TiO2 Composite for Efficient Photocatalytic Tetracycline Degradation [J]. Journal of Inorganic Materials, 2024, 39(4): 383-389. |
[4] | WU Lin, HU Minglei, WANG Liping, HUANG Shaomeng, ZHOU Xiangyuan. Preparation of TiHAP@g-C3N4 Heterojunction and Photocatalytic Degradation of Methyl Orange [J]. Journal of Inorganic Materials, 2023, 38(5): 503-510. |
[5] | LING Jie, ZHOU Anning, WANG Wenzhen, JIA Xinyu, MA Mengdan. Effect of Cu/Mg Ratio on CO2 Adsorption Performance of Cu/Mg-MOF-74 [J]. Journal of Inorganic Materials, 2023, 38(12): 1379-1386. |
[6] | SUN Chen, ZHAO Kunfeng, YI Zhiguo. Research Progress in Catalytic Total Oxidation of Methane [J]. Journal of Inorganic Materials, 2023, 38(11): 1245-1256. |
[7] | MA Xinquan, LI Xibao, CHEN Zhi, FENG Zhijun, HUANG Juntong. BiOBr/ZnMoO4 Step-scheme Heterojunction: Construction and Photocatalytic Degradation Properties [J]. Journal of Inorganic Materials, 2023, 38(1): 62-70. |
[8] | CHEN Hanxiang, ZHOU Min, MO Zhao, YI Jianjian, LI Huaming, XU Hui. 0D/2D CoN/g-C3N4 Composites: Structure and Photocatalytic Performance for Hydrogen Production [J]. Journal of Inorganic Materials, 2022, 37(9): 1001-1008. |
[9] | XUE Hongyun, WANG Congyu, MAHMOOD Asad, YU Jiajun, WANG Yan, XIE Xiaofeng, SUN Jing. Two-dimensional g-C3N4 Compositing with Ag-TiO2 as Deactivation Resistant Photocatalyst for Degradation of Gaseous Acetaldehyde [J]. Journal of Inorganic Materials, 2022, 37(8): 865-872. |
[10] | CHI Congcong, QU Panpan, REN Chaonan, XU Xin, BAI Feifei, ZHANG Danjie. Preparation of SiO2@Ag@SiO2@TiO2 Core-shell Structure and Its Photocatalytic Degradation Property [J]. Journal of Inorganic Materials, 2022, 37(7): 750-756. |
[11] | WANG Xiaojun, XU Wen, LIU Runlu, PAN Hui, ZHU Shenmin. Preparation and Properties of Ag@C3N4 Photocatalyst Supported by Hydrogel [J]. Journal of Inorganic Materials, 2022, 37(7): 731-740. |
[12] | LIU Xuechen, ZENG Di, ZHOU Yuanyi, WANG Haipeng, ZHANG Ling, WANG Wenzhong. Selective Oxidation of Biomass over Modified Carbon Nitride Photocatalysts [J]. Journal of Inorganic Materials, 2022, 37(1): 38-44. |
[13] | ZHANG Xian, ZHANG Ce, JIANG Wenjun, FENG Deqiang, YAO Wei. Synthesis, Electronic Structure and Visible Light Photocatalytic Performance of Quaternary BiMnVO5 [J]. Journal of Inorganic Materials, 2022, 37(1): 58-64. |
[14] | LIU Peng, WU Shimiao, WU Yunfeng, ZHANG Ning. Synthesis of Zn0.4(CuGa)0.3Ga2S4/CdS Photocatalyst for CO2 Reduction [J]. Journal of Inorganic Materials, 2022, 37(1): 15-21. |
[15] | WANG Luping, LU Zhanhui, WEI Xin, FANG Ming, WANG Xiangke. Application of Improved Grey Model in Photocatalytic Data Prediction [J]. Journal of Inorganic Materials, 2021, 36(8): 871-876. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||