 
 Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (12): 1357-1366.DOI: 10.15541/jim20240249
Special Issue: 【结构材料】热障与环境障涂层(202506)
• RESEARCH ARTICLE • Previous Articles Next Articles
					
													GUO Xiaoyang1( ), ZHANG Xiaolin1, JIANG Yan1(
), ZHANG Xiaolin1, JIANG Yan1( ), TIAN Yuan1, GENG Zhi2
), TIAN Yuan1, GENG Zhi2
												  
						
						
						
					
				
Received:2024-05-17
															
							
																	Revised:2024-07-13
															
							
															
							
																	Published:2024-07-16
															
							
																	Online:2024-07-16
															
						Contact:
								JIANG Yan, lecturer. E-mail: na_jiangyan@sina.comAbout author:GUO Xiaoyang (1999-), male, Master candidate. E-mail: guoxiaoyang707722@163.com				
													Supported by:CLC Number:
GUO Xiaoyang, ZHANG Xiaolin, JIANG Yan, TIAN Yuan, GENG Zhi. Ti-doped Hf(Zr)B2-SiC Anti-ablation Coatings: Preparation and Ablation Resistance Mechanism[J]. Journal of Inorganic Materials, 2024, 39(12): 1357-1366.
 
																													Fig. 2 XRD pattern, surface and cross-sectional microstructures, and EDS element analysis of HfTiB2-SiC coating (a) XRD pattern; (b) Surface morphology; (c) Enlarged view of Fig. (b); (d) EDS element mappings of Fig. (c); (e) EDS element point-analysis of Fig. (c); (f) Cross-sectional morphology; (g) Enlarged view of Fig. (f); (h) EDS element mappings of Fig. (g); (i) EDS element point-analysis of Fig. (g)
 
																													Fig. 3 XRD pattern, surface and cross-sectional microstructures, and EDS element analysis of ZrTiB2-SiC coating (a) XRD pattern; (b) Surface morphology; (c) Enlarged view of Fig. (b); (d) EDS element mappings of Fig. (c); (e) EDS element point-analysis of Fig. (c); (f) Cross-sectional morphology; (g) Enlarged view of Fig. (f); (h) EDS element mappings of Fig. (g); (i) EDS element point-analysis of Fig. (g)
 
																													Fig. 4 XRD pattern, surface and cross-sectional microstructures, and element distribution of HfTiB2-SiC coating sample after ablation for 480 s (a) XRD pattern; (b) Surface microscopic morphology of the ablation center; (c) Enlarged view of Fig. (b); (d) EDS element mappings of Fig. (c); (e) Microscopic morphology of the transition zone; (f) Surface element analysis of Fig. (e); (g) Cross-sectional morphology of the ablation center; (h) EDS element mappings of Fig. (g); (i) EDS element point-analysis of Fig. (c, g)
 
																													Fig. 5 XRD pattern, microstructures and element distributions of the ablation center surface and cross-sectional of ZrTiB2-SiC coating sample after ablation for 480 s (a) XRD pattern; (b) Surface microstructure; (c) Enlarged view of Fig. (b); (d) Enlarged view of Fig. (c); (e) EDS element mappings of Fig. (d); (f) Cross-sectional microscopic morphology; (g) Enlarged view of Fig. (f); (h) EDS element mappings of Fig. (g); (i) EDS element point-analysis of Fig. (d, g)
 
																													Fig. S1 XRD pattern, surface and cross-sectional microstructures and EDS element analysis of HfTiB2-SiC coating after plasma flame ablation for 150 s (a) XRD pattern; (b) Surface microstructure; (c) Enlarged view of Fig. (b); (d) Enlarged view of the ablation center; (e) Surface element analysis of Fig. (d); (f) Cross-sectional morphology; (g) Enlarged view of Fig. (f); (h) Surface element analysis of Fig. (g); (i) Element point analysis of Fig. (d, g)
| Element | Spot 1/% | 
|---|---|
| B | 30.42 | 
| C | 59.20 | 
| Si | 0.66 | 
| Ti | 2.00 | 
| Hf | 7.72 | 
Table S1 Element atomic fraction of Spot 1 in Fig. 2(c)
| Element | Spot 1/% | 
|---|---|
| B | 30.42 | 
| C | 59.20 | 
| Si | 0.66 | 
| Ti | 2.00 | 
| Hf | 7.72 | 
| Element | Spot 1/% | 
|---|---|
| B | 57.66 | 
| C | 30.13 | 
| Si | 0 | 
| Ti | 2.87 | 
| Zr | 9.35 | 
Table S2 Element atomic fraction of Spot 1 in Fig. 3(c)
| Element | Spot 1/% | 
|---|---|
| B | 57.66 | 
| C | 30.13 | 
| Si | 0 | 
| Ti | 2.87 | 
| Zr | 9.35 | 
| Element | Spot 1/% | Spot 2/% | Spot 3/% | 
|---|---|---|---|
| O | 64.15 | 64.42 | 60.46 | 
| Si | 3.70 | 33.04 | 16.30 | 
| Ti | 0.24 | 0.55 | 0.37 | 
| Hf | 31.91 | 1.99 | 22.87 | 
Table S3 Eelement atomic fraction of Spots 1-3 in Fig. 4(c)
| Element | Spot 1/% | Spot 2/% | Spot 3/% | 
|---|---|---|---|
| O | 64.15 | 64.42 | 60.46 | 
| Si | 3.70 | 33.04 | 16.30 | 
| Ti | 0.24 | 0.55 | 0.37 | 
| Hf | 31.91 | 1.99 | 22.87 | 
| Element | Spot 1/% | Spot 2/% | Spot 3/% | 
|---|---|---|---|
| O | 64.20 | 72.86 | 57.10 | 
| Si | 1.75 | 13.14 | 29.01 | 
| Ti | 2.69 | 2.56 | 5.31 | 
| Zr | 31.36 | 11.44 | 8.58 | 
Table S4 Element atomic fraction of Spots 1-3 in Fig. 5(d)
| Element | Spot 1/% | Spot 2/% | Spot 3/% | 
|---|---|---|---|
| O | 64.20 | 72.86 | 57.10 | 
| Si | 1.75 | 13.14 | 29.01 | 
| Ti | 2.69 | 2.56 | 5.31 | 
| Zr | 31.36 | 11.44 | 8.58 | 
| Element | Spot 4/% | Spot 6/% | 
|---|---|---|
| C | 17.38 | 12.51 | 
| O | 42.38 | 59.93 | 
| Si | 0.59 | 20.94 | 
| Ti | 2.38 | 4.75 | 
| Zr | 37.27 | 1.86 | 
Table S5 Element atomic fraction of Spots 4 and 6 in Fig. 5(g)
| Element | Spot 4/% | Spot 6/% | 
|---|---|---|
| C | 17.38 | 12.51 | 
| O | 42.38 | 59.93 | 
| Si | 0.59 | 20.94 | 
| Ti | 2.38 | 4.75 | 
| Zr | 37.27 | 1.86 | 
| [1] | 田原, 姜岩, 付琬璐. 石墨表面Si-SiC-TaB2抗烧蚀复合涂层的制备及性能研究. 耐火材料, 2023, 57(1):35. DOI | 
| [2] | 任岩. 石墨材料表面ZrB2-SiC基抗高温/超高温氧化防护涂层的制备与性能研究. 合肥: 中国科学技术大学博士学位论文, 2021. | 
| [3] | JU Y C, LIU X Y, WANG Q, et al. Ablation behavior of ultra-high temperature composite ceramic matrix composites. Journal of Inorganic Materials, 2022, 37(1):86. DOI | 
| [4] | XU B, HE R, HONG C, et al. Ablation behavior and mechanism of double-layer ZrB2-based ceramic coating for lightweight carbon- bonded carbon fiber composites under oxyacetylene flame at elevate temperature. Journal of Alloys and Compounds, 2017, 702: 551. | 
| [5] | SUN W, HAO Z, XIONG X, et al. Microstructure and cyclic ablation behaviour of a Si-Mo-Ti protected C/C composites by a two- step method. Materials at High Temperatures, 2021, 38(2):114. | 
| [6] | XU Y, SUN W, XIONG X, et al. Microstructure and ablation resistance of ZrCxNy-modified ZrC-SiC composite coating for carbon/carbon composites. Journal of the European Ceramic Society, 2018, 38(13):4363. | 
| [7] | WANG Y, GUO L, ZHANG Y, et al. Ablation behaviors and mechanism of ZrC-SiC-Si/SiC-Si double-layered coatings on C/C composite under plasma flame at 3000 ℃. Corrosion Science, 2023, 218: 111200. | 
| [8] | DENG N, SUN W, XIONG X, et al. ZrC, HfC, and ZrC/ZrxSiy coatings prepared via molten salt solid-liquid two-phase diffusion method and ablation properties. Journal of Materials Research and Technology, 2022, 20: 572. | 
| [9] | TORABI S, VALEFI Z, EHSANI N. Ablation behavior of SiC/ZrB2 ultra-high temperature ceramic coatings by solid shielding shrouded plasma spray for high-temperature applications (temperature above 2000 ℃). Surface and Coatings Technology, 2020, 403: 126271. | 
| [10] | CAI F Y, NI D W, DONG S M. Research progress of high-entropy carbide ultra-high temperature ceramics. Journal of Inorganic Materials, 2024, 39(6):591. | 
| [11] | ZHANG X H, WANG Y M, CHENG Y, et al. Research progress on ultra-high temperature ceramic composites. Journal of Inorganic Materials, 2024, 39(6):571. | 
| [12] | 张瑞涛, 杨鑫, 王秀飞, 等. HfC-SiC复合涂层的制备及高温耐烧蚀性能研究. 碳素技术, 2021, 40(6):38. | 
| [13] | HUANG K, XIA Y, WANG A. High temperature oxidation and oxyacetylene ablation properties of ZrB2-ZrC-SiC ultra-high temperature composite ceramic coatings deposited on C/C composites by laser cladding. Coatings, 2023, 13(1):173. | 
| [14] | LIU H, YANG X, FANG C, et al. Ablation resistance and mechanism of SiC-LaB6 and SiC-LaB6-ZrB2 ceramics under plasma flame. Ceramics International, 2020, 46(10):16249. | 
| [15] | JIANG Y, HU C, LIANG B, et al. Cyclic ablation resistance at 2300 ℃ of (Hf0.4Zr0.4Ta0.2)B2-SiC-Si coating for C/SiC composites prepared by SiC-assisted reactive infiltration of silicon. Surface and Coatings Technology, 2022, 451: 129072. | 
| [16] | ZHANG P, CHENG C, XU M, et al. High-entropy (Hf0.25Zr0.25- Ti0.25Cr0.25)B2 ceramic incorporated SiC-Si composite coating to protect C/C composites against ablation above 2400 K. Ceramics International, 2022, 48(18):27106. | 
| [17] | YAN N, ZHANG J, LIU T, et al. One-step preparation and ablation behavior of ZrC-SiC-Si coating for nose-shaped ZrC/C composites with gradient pore structure by vapor silicon infiltration. Corrosion Science, 2022, 206: 110505. | 
| [18] | ZHANG J, ZHANG Y, ZHU X, et al. A novel Hf0.75Zr0.25N solid solution coating with high mechanical strength: ablation protection application above 2200 ℃. Ceramics International, 2023, 49(15):26022. | 
| [19] | ZHANG J, ZHANG Y, CHEN R, et al. Effect of microstructure on the ablation behavior and mechanical properties of CVD-HfC coating. Corrosion Science, 2021, 192: 109815. | 
| [20] | 李新星, 韩伯群, 王红侠, 等. 熔渗反应合成铝基表面Al3Ti/Al复合涂层. 轻金属, 2019(3): 40. | 
| [21] | SHALMANI S A A, SOBHANI M, MIRZAEE O, et al. Effect of HfB2 and WC additives on the ablation resistance of ZrB2-SiC composite coating manufactured by SPS. Ceramics International, 2020, 46(16):25106. | 
| [22] | 汪宏兵. 浆料法制备Mo2FeB2金属陶瓷-钢覆层材料及其性能研究. 武汉: 武汉科技大学硕士学位论文, 2008. | 
| [23] | ALIASGRIAN R, NADERI M, MIRSALEHI S E, et al. The ablation behavior of ZrB2-SiC coating prepared by shrouded plasma spray on SiC-coated graphite. Journal of Alloys and Compounds, 2018, 742: 797. | 
| [24] | HU D, FU Q, ZHOU L, et al. Grain growth limitation in the monolayer ZrB2-SiC coating above 1700 °C. Ceramics International, 2022, 48(10):14767. | 
| [25] | BAI Y, WANG Q, MA Z, et al. Characterization and ablation resistance of ZrB2-xSiC gradient coatings deposited with HPPS. Ceramics International, 2020, 46(10):14756. | 
| [26] | WANG P, ZHOU S, HU P, et al. Ablation resistance of ZrB2- SiC/SiC coating prepared by pack cementation for graphite. Journal of Alloys and Compounds, 2016, 682: 203. | 
| [27] | WANG P, LI H, JIA Y, et al. Ablation resistance of HfB2-SiC coating prepared by in-situ reaction method for SiC coated C/C composites. Ceramics International, 2017, 43(15):12005. | 
| [28] | WANG P, LI S, WEI C, et al. Microstructure and ablation properties of SiC/ZrB2-SiC/ZrB2/SiC multilayer coating on graphite. Journal of Alloys and Compounds, 2019, 781: 26. | 
| [29] | JIANG Y, LIU T, RU H, et al. Ultra-high-temperature ceramic TaB2-SiC-Si coating by impregnation and in-situ reaction method to prevent graphite materials from oxidation and ablation. Ceramics International, 2019, 45(5):6541. | 
| [30] | SHI A, YANG X, FANG C, et al. Microstructure and ablation behavior of Zr-Ti-Si-C multiphase coating fabricated by solid solution and in-situ reaction. Corrosion Science, 2021, 192: 109852. | 
| [31] | LIU C, CAO L, CHEN J, et al. Microstructure and ablation behavior of SiC coated C/C-SiC-ZrC composites prepared by a hybrid infiltration process. Carbon, 2013, 65: 196. | 
| [32] | FANG C, YANG X, HE K, et al. Microstructure and ablation properties of La2O3 modified C/C-SiC composites prepared via precursor infiltration pyrolysis. Journal of the European Ceramic Society, 2019, 39(4):762. | 
| [33] | XUE L, SU Z, YANG X, et al. Microstructure and ablation behavior of C/C-HfC composites prepared by precursor infiltration and pyrolysis. Corrosion Science, 2015, 94: 165. | 
| [34] | JIANG Y, LIU T, RU H, et al. Oxidation and ablation protection of multiphase Hf0.5Ta0.5B2-SiC-Si coating for graphite prepared by dipping-pyrolysis and reactive infiltration of gaseous silicon. Applied Surface Science, 2018, 459: 527. | 
| [35] | ZHOU L, ZHANG J, HU D, et al. Investigation on the oxidation and ablation behaviors of HfB2-SiC-Si/SiC-Si coatings for carbon/carbon composites. Corrosion Science, 2021, 190: 109638. | 
| [36] | ZHOU L, ZHANG J, HU D, et al. High temperature oxidation and ablation behaviors of HfB2-SiC/SiC coatings for carbon/carbon composites fabricated by dipping-carbonization assisted pack cementation. Journal of Materials Science & Technology, 2022, 111: 88. | 
| [37] | JIANG Y, LIU T, RU H, et al. Oxidation and ablation protection of double layer HfB2-SiC-Si/SiC-Si coating for graphite materials. Journal of Alloys and Compounds, 2019, 782: 761. | 
| [38] | TANG P, HU C, JIANG Y, et al. Facile preparation of SiC/ZrB2- SiC-Si coatings on Cf/SiC composites for ultrahigh temperature ablation resistance. Corrosion Science, 2024, 232: 112051. | 
| [39] | 张天助, 陈招科, 熊翔. C/C复合材料ZrB2-SiC基陶瓷涂层制备及烧蚀性能研究. 中国材料进展, 2013, 32(11):659. | 
| [40] | ZHAO R D, TANG S F. Research progress of ceramic matrix composites prepared by improved reactive melt infiltration through ceramization of porous carbon matrix. Journal of Inorganic Materials, 2024, 39(6):623. | 
| [1] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. | 
| [2] | SU Yi, SHI Yangfan, JIA Chenglan, CHI Pengtao, GAO Yang, MA Qingsong, CHEN Sian. Microstructure and Properties of C/HfC-SiC Composites Prepared by Slurry Impregnation Assisted Precursor Infiltration Pyrolysis [J]. Journal of Inorganic Materials, 2024, 39(6): 726-732. | 
| [3] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. | 
| [4] | GUO Lingxiang, TANG Ying, HUANG Shiwei, XIAO Bolan, XIA Donghao, SUN Jia. Ablation Resistance of High-entropy Oxide Coatings on C/C Composites [J]. Journal of Inorganic Materials, 2024, 39(1): 61-70. | 
| [5] | CAI Jia, ZHAO Fangxia, FAN Dong, HUANG Liping, NIU Yaran, ZHENG Xuebin, ZHANG Zhenzhong. Pyrolysis Behavior and Laser Ablation Resistance of PCS in Polycarbosilane Composite Coatings [J]. Journal of Inorganic Materials, 2023, 38(11): 1271-1280. | 
| [6] | FAN Qian-Guo, CUI Hong, YAN Lian-Sheng, ZHANG Qiang, MENG Xiang-Li, YANG Xing. Ablation Resistance Properties of Ultra-high Temperature Composites C/C-SiC-ZrB2 by Slurry Impregnation Method [J]. Journal of Inorganic Materials, 2013, 28(9): 1014-1018. | 
| [7] | Lü Peng-Xiang, WEI Dong-Bo, GUO Cheng-Bo, LI Zhao-Long, DI Shi-Chun. Study on Scanning Micro-arc Oxidation Technology Applied to 2024 Aluminum Alloy [J]. Journal of Inorganic Materials, 2013, 28(4): 381-386. | 
| [8] | ZHOU Hai-Jun, ZHANG Xiang-Yu, GAO Le, HU Jian-Bao, WU Bin, DONG Shao-Ming. Ablation Properties of ZrB2-SiC Ultra-high Temperature Ceramic Coatings [J]. Journal of Inorganic Materials, 2013, 28(3): 256-260. | 
| [9] | ZHAO Dan, ZHANG Chang-Rui, ZHANG Yu-Di, CHEN Si-An, HU Hai-Feng. Reactive Preparation and Properties of ZrB2 Coating [J]. Journal of Inorganic Materials, 2011, 26(9): 902-906. | 
| [10] | XUE Wen-Bin,JIN Qian,ZHU Qing-Zhen,MA Yue-Yu. Structure and Properties of Microarc Oxidation Coatings on SiCP/AZ31 Magnesium Matrix Composite [J]. Journal of Inorganic Materials, 2009, 24(3): 612-616. | 
| [11] | GUAN Yong-Jun,XIA Yuan. 
														
															Electrochemical Impedance Spectroscopy of PEO Coating on Aluminum Alloy in NaCl Solution [J]. Journal of Inorganic Materials, 2008, 23(4): 784-788. | 
| [12] | WU Zhen-Dong,JIANG Zhao-Hua,YAO Zhong-Ping,ZHANG Xue-Lin. 
														
															nfluence of Treatment Time on Structure and Property of Ceramic Coatings Formed on LY12 Aluminum Alloy by Micro-arc Oxidation [J]. Journal of Inorganic Materials, 2007, 22(3): 555-559. | 
| [13] | WANG Jian-Jiang,DU Xin-Kang,LIU Hong-Wei,ZHANG Long,LU Da-Qin. 
														
															Influence of Al on Reactive Flame Sprayed TiC-TiB2 Multiphased Ceramic Coatings [J]. Journal of Inorganic Materials, 2007, 22(3): 550-554. | 
| [14] | WU Zhen-Qiang,XIA Yuan,ZHANG Chun-Jie,LI Guang. 
														
															Evolution of Aluminium Layer Transformed into Ceramic Coating on Steel Substrate [J]. Journal of Inorganic Materials, 2007, 22(3): 534-538. | 
| [15] | XIN Shi-Gang,SONG Li-Xin,ZHAO Rong-Gen,HU Xing-Fang. Microstructure and Adhesion Strength of Al-Si-O \\Micro-arc Oxidation Coating [J]. Journal of Inorganic Materials, 2006, 21(2): 493-498. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||