Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (7): 787-794.DOI: 10.15541/jim20210612
Special Issue: 【信息功能】介电、铁电、压电材料(202409); 【材料计算】计算材料(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
WEN Zhiqin(), HUANG Binrong, LU Taoyi, ZOU Zhengguang
Received:
2021-09-29
Revised:
2021-11-27
Published:
2022-07-20
Online:
2021-12-16
About author:
WEN Zhiqin (1987-), male, lecturer. E-mail: wenzhiqin@glut.edu.cn
Supported by:
CLC Number:
WEN Zhiqin, HUANG Binrong, LU Taoyi, ZOU Zhengguang. Pressure on the Structure and Thermal Properties of PbTiO3: First-principle Study[J]. Journal of Inorganic Materials, 2022, 37(7): 787-794.
Phase | Species | Present | Cal. | Exp. |
---|---|---|---|---|
TP-PTO | a=b/nm | 0.389 | 0.389[ | 0.39[ |
c/nm | 0.417 | 0.416[ | 0.416[ | |
∆Hf /eV | -13.45 | -13.34[ | ||
CP-PTO | a=b=c/nm | 0.397 | 0.397[ | 0.395[ |
∆Hf /eV | -13.38 | -13.25[ | ||
PP-PTO | a=b/nm | 1.244 | 1.216[ | 1.237[ |
c/nm | 0.377 | 0.376[ | 0.381[ | |
∆Hf /eV | -5.85 |
Table 1 Calculated lattice constant and enthalpy of formation of PTO at 0 GPa along with feasible experimental (Exp.) and theoretical calculation (Cal.) values
Phase | Species | Present | Cal. | Exp. |
---|---|---|---|---|
TP-PTO | a=b/nm | 0.389 | 0.389[ | 0.39[ |
c/nm | 0.417 | 0.416[ | 0.416[ | |
∆Hf /eV | -13.45 | -13.34[ | ||
CP-PTO | a=b=c/nm | 0.397 | 0.397[ | 0.395[ |
∆Hf /eV | -13.38 | -13.25[ | ||
PP-PTO | a=b/nm | 1.244 | 1.216[ | 1.237[ |
c/nm | 0.377 | 0.376[ | 0.381[ | |
∆Hf /eV | -5.85 |
TP-PTO | CP-PTO | PP-PTO | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 GPa | 10 GPa | 20 GPa | 30 GPa | 0 GPa | 10 GPa | 20 GPa | 30 GPa | 0 GPa | 10 GPa | 20 GPa | 30 GPa | |
Present /eV | 1.76 a | 1.587 | 1.483 | 1.40 | 1.675 b | 1.611 | 1.538 | 1.459 | 2.346 c | 2.002 | 1.549 | 1.142 |
Table 2 Calculated band gap of PTO under 0-30 GPa pressure
TP-PTO | CP-PTO | PP-PTO | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 GPa | 10 GPa | 20 GPa | 30 GPa | 0 GPa | 10 GPa | 20 GPa | 30 GPa | 0 GPa | 10 GPa | 20 GPa | 30 GPa | |
Present /eV | 1.76 a | 1.587 | 1.483 | 1.40 | 1.675 b | 1.611 | 1.538 | 1.459 | 2.346 c | 2.002 | 1.549 | 1.142 |
C11 | C33 | C44 | C66 | C12 | C13 | C16 | ||
---|---|---|---|---|---|---|---|---|
TP-PTO | Present | 252.9 | 59.1 | 72.6 | 100.7 | 106.1 | 71.1 | - |
Exp.[ | 237 | 60 | 69 | 144 | 90 | 70 | - | |
Cal.[ | 253.9 | 79.8 | 73.3 | 100.9 | 103.8 | 79 | - | |
CP-PTO | Present | 279.2 | - | 98.2 | - | 118.5 | - | - |
Exp.[ | 229 | - | 100 | - | 101 | - | - | |
Cal.[ | 279.9 | - | 98.6 | - | 117.9 | - | - | |
PP-PTO | Present | 86.95 | 209.5 | 50.82 | 42.28 | 25.51 | 49.79 | 2.55 |
Cal.[ | 98.8 | 287.8 | 61.4 | 56.8 | 43.2 | 79.8 | 4.9 |
Table 3 Elastic constant (Cij, GPa) of PTO under 0 GPa pressure as well as available experimental (Exp.) and theoretical calculation (Cal.) data
C11 | C33 | C44 | C66 | C12 | C13 | C16 | ||
---|---|---|---|---|---|---|---|---|
TP-PTO | Present | 252.9 | 59.1 | 72.6 | 100.7 | 106.1 | 71.1 | - |
Exp.[ | 237 | 60 | 69 | 144 | 90 | 70 | - | |
Cal.[ | 253.9 | 79.8 | 73.3 | 100.9 | 103.8 | 79 | - | |
CP-PTO | Present | 279.2 | - | 98.2 | - | 118.5 | - | - |
Exp.[ | 229 | - | 100 | - | 101 | - | - | |
Cal.[ | 279.9 | - | 98.6 | - | 117.9 | - | - | |
PP-PTO | Present | 86.95 | 209.5 | 50.82 | 42.28 | 25.51 | 49.79 | 2.55 |
Cal.[ | 98.8 | 287.8 | 61.4 | 56.8 | 43.2 | 79.8 | 4.9 |
p/GPa | B/GPa | G/GPa | E/GPa | ν | Au | |
---|---|---|---|---|---|---|
TP-PTO | 0 | 87.76 | 56.91 | 140.38 | 0.23 | 4.1150 |
10 | 211.16 | 101.92 | 263.39 | 0.29 | 0.1345 | |
20 | 274.35 | 125.99 | 327.81 | 0.30 | 0.0413 | |
30 | 315.08 | 139.28 | 364.19 | 0.31 | 0.1059 | |
CP-PTO | 0 | 172.02 | 90.86 | 231.76 | 0.28 | 0.0505 |
10 | 217.28 | 106.87 | 275.45 | 0.29 | 0.0003 | |
20 | 257.15 | 120.49 | 312.65 | 0.30 | 0.0161 | |
30 | 299.13 | 133.24 | 348.06 | 0.31 | 0.0604 | |
PP-PTO | 0 | 63.19 | 44.09 | 107.32 | 0.22 | 0.7114 |
10 | 121.88 | 60.96 | 156.75 | 0.29 | 0.5906 | |
20 | 173.96 | 70.31 | 185.89 | 0.32 | 0.4811 | |
30 | 219.12 | 77.26 | 207.40 | 0.34 | 0.5568 |
Table 4 Bulk modulus (B), shear modulus (G), Young's modulus (E), Poisson's ratio (ν), and anisotropy (Au) of PTO under various pressures
p/GPa | B/GPa | G/GPa | E/GPa | ν | Au | |
---|---|---|---|---|---|---|
TP-PTO | 0 | 87.76 | 56.91 | 140.38 | 0.23 | 4.1150 |
10 | 211.16 | 101.92 | 263.39 | 0.29 | 0.1345 | |
20 | 274.35 | 125.99 | 327.81 | 0.30 | 0.0413 | |
30 | 315.08 | 139.28 | 364.19 | 0.31 | 0.1059 | |
CP-PTO | 0 | 172.02 | 90.86 | 231.76 | 0.28 | 0.0505 |
10 | 217.28 | 106.87 | 275.45 | 0.29 | 0.0003 | |
20 | 257.15 | 120.49 | 312.65 | 0.30 | 0.0161 | |
30 | 299.13 | 133.24 | 348.06 | 0.31 | 0.0604 | |
PP-PTO | 0 | 63.19 | 44.09 | 107.32 | 0.22 | 0.7114 |
10 | 121.88 | 60.96 | 156.75 | 0.29 | 0.5906 | |
20 | 173.96 | 70.31 | 185.89 | 0.32 | 0.4811 | |
30 | 219.12 | 77.26 | 207.40 | 0.34 | 0.5568 |
[1] | ZHANG S, LI F. High performance ferroelectric relaxor-PbTiO3 single crystals: status and perspective. Journal of Applied Physics, 2012, 111: 031301. |
[2] | HUANG J, ZHANG X W, ZHAO C, et al. Research status of modification of lead titanate series functional ceramics and application of modified ceramics. Materials for Mechanical Engineering, 2021, 45(6): 94-98. |
[3] |
ZHANG S, LI F, JIANG X, et al. Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers-a review. Progress in Materials Science, 2015, 68: 1-66.
DOI URL |
[4] |
KUROIWA Y, AOYAGI S, SAWADA A, et al. Structural study of perovskite-type fine particles by synchrotron radiation powder diffraction. Journal of Thermal Analysis and Calorimetry, 2002, 69(3): 933-938.
DOI URL |
[5] |
WATTANASARN H, SEETAWAN T. Elastic properties and Debye temperature of Zn doped PbTiO3 from first principles calculation. Integrated Ferroelectrics, 2014, 155(1): 59-65.
DOI URL |
[6] | PANDECH N, SARASAMAK K, LIMPIJUMNONG S. Sound velocities and elastic properties of PbTiO3 and PbZrO3 under pressure: first principles study. Ceramics International, 2013, 39: S277-S281. |
[7] | YASEEN M, AMBREEN H, MEHMOOD R, et al. Investigation of optical and thermoelectric properties of PbTiO3 under pressure. Physica B: Condensed Matter, 2021, 615: 412857. |
[8] |
REN Z, XU G, LIU Y, et al. PbTiO3 nanofibers with edge-shared TiO6 octahedra. Journal of the American Chemical Society, 2010, 132(16): 5572-5573.
DOI URL |
[9] | LIU Y, NI L H, REN Z H, et al. First-principles study of structural stability and elastic property of pre-perovskite PbTiO3. Chinese Physics B, 2012, 21(1): 352-356. |
[10] |
ZHOU M J, WANG Y, JI Y, et al. First-principles lattice dynamics and thermodynamic properties of pre-perovskite PbTiO3. Acta Materialia, 2019, 171: 146-153.
DOI URL |
[11] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865-3868.
DOI URL |
[12] | PERDEW J P, RUZSINSZKY A, CSONKA G I, et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Physical Review Letters, 2008, 100(13): 136406. |
[13] |
LIU Y, NI L H, XU G, et al. Phase transition in PbTiO3 under pressure studied by the first-principles method. Physica B-Condensed Matter, 2008, 403(21/22): 3863-3866.
DOI URL |
[14] |
SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code. Journal of Physics: Condensed Matter, 2002, 14(11): 2717-2744.
DOI URL |
[15] |
PERDEW J P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Physical Review B, 1986, 33(12): 8822-8824.
DOI URL |
[16] |
LAASONEN K, PASQUARELLO A, CAR R, et al. Carparrinello molecular dynamics with vanderbilt ultrasoft pseudopotentials. Physical Review B, 1993, 47(16): 10142-10153.
DOI URL |
[17] |
FISCHER T H, ALMLOF J. General methods for geometry and wave function optimization. The Journal of Physical Chemistry, 1992, 96(24): 9768-9774.
DOI URL |
[18] |
LONG J, YANG L, WEI X. Lattice, elastic properties and Debye temperatures of ATiO3 (A=Ba, Ca, Pb, Sr) from first-principles. Journal of Alloys and Compounds, 2013, 549: 336-340.
DOI URL |
[19] | ZHANG Y, SUN J, PERDEW J P, et al. Comparative first- principles studies of prototypical ferroelectric materials by LDA, GGA, and SCAN meta-GGA. Physical Review B, 2017, 96: 035143. |
[20] |
NELMES R J, KUHS W F. The crystal structure of tetragonal PbTiO3 at room temperature and at 700 K. Solid State Communications, 1985, 54(8): 721-723.
DOI URL |
[21] | ALAHMED Z, FU H X. First-principles determination of chemical potentials and vacancy formation energies in PbTiO3 and BaTiO3. Physical Review B, 2007, 76(22): 224101. |
[22] |
NIU P J, YAN J L, XU C Y. First-principles study of nitrogen doping and oxygen vacancy in cubic PbTiO3. Computational Materials Science, 2015, 98: 10-14.
DOI URL |
[23] |
WEN Z, ZHAO Y, LI J, et al. Phase stability and thermo-physical properties of nickel-aluminum binary chemically disordered systems via first-principles study. Metals and Materials International, 2021, 27(6): 1469-1477.
DOI URL |
[24] | JIAO Z Y, YANG J F, ZHANG X Z, et al. Theoretical investigation of elastic, electronic, and optical properties of zinc-blende structure GaN under high pressure. Acta Physica Sinica, 2011, 60(11): 534-541. |
[25] |
HOSSEINI S M, MOVLAROOY T, KOMPANY A. First-principle calculations of the cohesive energy and the electronic properties of PbTiO3. Physica B: Condensed Matter, 2007, 391(2): 316-321.
DOI URL |
[26] |
SHI Y J, DU Y L, CHEN G, et al. First principle study on phase stability and electronic structure of YCu. Physics Letters A, 2007, 368(6): 495-498.
DOI URL |
[27] | HU Q M, YANG R, XU D S, et al. Energetics and electronic structure of grain boundaries and surfaces of B- and H-doped Ni3Al. Physical Review B, 2003, 67(22): 224203. |
[28] | GUO F, ZHOU X, LI G, et al. Structural, mechanical, electronic and thermodynamic properties of cubic TiC compounds under different pressures: a first-principles study. Solid State Communications, 2020, 311: 113856. |
[29] |
ZAMETIN V I. Absorption edge anomalies in polar semiconductors and dielectrics at phase transitions. Physica Status Solidi (B), 1984, 124(2): 625-640.
DOI URL |
[30] |
LEITE E R, SANTOS L P S, CARRENO N L V, et al. Photoluminescence of nanostructured PbTiO3 processed by high- energy mechanical milling. Applied Physics Letters, 2001, 78(15): 2148-2150.
DOI URL |
[31] |
REN Z, JING G, LIU Y, et al. Pre-perovskite nanofiber: a new direct-band gap semiconductor with green and near infrared photoluminescence. RSC Advances, 2013, 3(16): 5453-5458.
DOI URL |
[32] |
YANG A C M. Measurements of equi-biaxial stress in adhered polyimide films by tilted beam polarized light microscopy. Materials Chemistry and Physics, 1995, 41(2): 150-153.
DOI URL |
[33] |
DAI S, LIU W. First-principles study on the structural, mechanical and electronic properties of δ and γ phases in Inconel 718. Computational Materials Science, 2010, 49(2): 414-418.
DOI URL |
[34] |
KALINICHEV A G, BASS J D, SUN B N, et al. Elastic properties of tetragonal PbTiO3 single crystals by brillouin scattering. Journal of Materials Research, 1997, 12(10): 2623-2627.
DOI URL |
[35] |
LI Z, GRIMSDITCH M, FOSTER C M, et al. Dielectric and elastic properties of ferroelectric materials at elevated temperature. Journal of Physics and Chemistry of Solids, 1996, 57(10): 1433-1438.
DOI URL |
[36] |
HILL R. The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society. Section A, 1952, 65(5): 349-354.
DOI URL |
[37] |
VOIGT W. Ueber die beziehung zwischen den beiden elasticitätsconstanten isotroper körper. Annalen der Physik, 1889, 274(12): 573-587.
DOI URL |
[38] | WANG H J, SU X P, SUN S P, et al. First-principles calculations to investigate the anisotropic elasticity and thermodynamic properties of FeAl3 under pressure effect. Results in Physics, 2021, 26: 104361. |
[39] |
ZHANG R, GAO P, WANG X, et al. Pressure and temperature dependence of structural and elastic properties of FeSe superconductor by first-principles calculation. Cryogenics, 2019, 102: 28-34.
DOI URL |
[40] |
PENG J H, TIKHONOV E. Vacancy on structures, mechanical properties and electronic properties of ternary Hf-Ta-C system: a first-principles study. Journal of Inorganic Materials, 2022, 37(1): 51-57.
DOI URL |
[41] | RANGANATHAN S I, OSTOJA-STARZEWSKI M. Universal elastic anisotropy index. Physical Review Letters, 2008, 101(5): 055504. |
[42] |
BLANCO M A, FRANCISCO E, LUAÑA V. Gibbs: isothermal- isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Computer Physics Communications, 2004, 158(1): 57-72.
DOI URL |
[43] |
OTERO-DE-LA-ROZA A, ABBASI-PÉREZ D, LUAÑA V. Gibbs 2: a new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation. Computer Physics Communications, 2011, 182(10): 2232-2248.
DOI URL |
[1] | WU Yuhao, PENG Renci, CHENG Chunyu, YANG Li, ZHOU Yichun. First-principles Study on Mechanical Properties and Melting Curve of HfxTa1-xC System [J]. Journal of Inorganic Materials, 2024, 39(7): 761-768. |
[2] | ZHOU Yunkai, DIAO Yaqi, WANG Minglei, ZHANG Yanhui, WANG Limin. First-principles Calculation Study of the Oxidation Resistance of PANI Modified Ti3C2(OH)2 [J]. Journal of Inorganic Materials, 2024, 39(10): 1151-1158. |
[3] | WU Xiaowei, ZHANG Han, ZENG Biao, MING Chen, SUN Yiyang. Comparison of Hybrid Functionals HSE and PBE0 in Calculating the Defect Properties of CsPbI3 [J]. Journal of Inorganic Materials, 2023, 38(9): 1110-1116. |
[4] | XIAO Meixia, LI Miaomiao, SONG Erhong, SONG Haiyang, LI Zhao, BI Jiaying. Halogenated Ti3C2 MXene as High Capacity Electrode Material for Li-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(6): 660-668. |
[5] | YUAN Gang, MA Xinguo, HE Hua, DENG Shuiquan, DUAN Wangyang, CHENG Zhengwang, ZOU Wei. Plane Strain on Band Structures and Photoelectric Properties of 2D Monolayer MoSi2N4 [J]. Journal of Inorganic Materials, 2022, 37(5): 527-533. |
[6] | ZHANG Xian, ZHANG Ce, JIANG Wenjun, FENG Deqiang, YAO Wei. Synthesis, Electronic Structure and Visible Light Photocatalytic Performance of Quaternary BiMnVO5 [J]. Journal of Inorganic Materials, 2022, 37(1): 58-64. |
[7] | PENG Junhui, TIKHONOV Evgenii. Vacancy on Structures, Mechanical and Electronic Properties of Ternary Hf-Ta-C System: a First-principles Study [J]. Journal of Inorganic Materials, 2022, 37(1): 51-57. |
[8] | XIANG Hui, QUAN Hui, HU Yiyuan, ZHAO Weiqian, XU Bo, YIN Jiang. Piezoelectricity of Graphene-like Monolayer ZnO and GaN [J]. Journal of Inorganic Materials, 2021, 36(5): 492-496. |
[9] | YAN Yuxing, WANG Fan, ZHANG Juexuan, LI Fushao. First Principles Study of Electronic Structure and Optical Properties of ZnNb2O6 with Vacancy Defects [J]. Journal of Inorganic Materials, 2021, 36(3): 269-276. |
[10] | ZHAO Linyan, LIU Yangsi, XI Xiaoli, MA Liwen, NIE Zuoren. First-principles Study on Nanoscale Tungsten Oxide: a Review [J]. Journal of Inorganic Materials, 2021, 36(11): 1125-1136. |
[11] | ZHAO Yupeng,HE Yong,ZHANG Min,SHI Junjie. First-principles Study on the Photocatalytic Hydrogen Production of a Novel Two-dimensional Zr2CO2/InS Heterostructure [J]. Journal of Inorganic Materials, 2020, 35(9): 993-998. |
[12] | LIN Qimin, CUI Jiangong, YAN Xin, YUAN Xueguang, CHEN Xiaoyu, LU Qichao, LUO Yanbin, HUANG Xue, ZHANG Xia, REN Xiaomin. First-principles Study on Electronic Structure and Optical Properties of Single Point Defect Graphene Oxide [J]. Journal of Inorganic Materials, 2020, 35(10): 1117-1122. |
[13] | WANG Chang-Ying, LU Yu-Chang, REN Cui-Lan, WANG Gang, HUAI Ping. Theoretical Studies on the Modulation of the Electronic Property of Ti2CO2 by Electric Field, Strain and Charge States [J]. Journal of Inorganic Materials, 2020, 35(1): 73-78. |
[14] | LIU Guo-Quan, JIANG Xiao-Juan, ZHOU Jie, LI You-Bing, BAI Xiao-Jing, CHEN Ke, HUANG Qing, DU Shi-Yu. Synthesis and Theoretical Study of Conductive Mo1.33CT2 MXene [J]. Journal of Inorganic Materials, 2019, 34(7): 775-780. |
[15] | WANG Zhong, ZHA Xian-Hu, WU Ze, HUANG Qing, DU Shi-Yu. First-principles Study on Electronic and Magnetic Properties of Mn-doped Strontium Ferrite SrFe12O19 [J]. Journal of Inorganic Materials, 2019, 34(10): 1047-1054. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||