Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (3): 315-323.DOI: 10.15541/jim20190349
Special Issue: 2020年环境材料论文精选(三)有机小分子去除; 【虚拟专辑】污染物吸附水处理(2020~2021)
Previous Articles Next Articles
DU Xudong1,TANG Chengyuan1,YANG Xiaoli2,CHENG Jianbo1,JIA Yuke1,YANG Shubin1()
Received:
2019-07-15
Revised:
2019-09-12
Published:
2020-03-20
Online:
2019-10-23
About author:
DU Xudong (1995-), male, Master candidate. E-mail: 2062296740@qq.com
Supported by:
CLC Number:
DU Xudong, TANG Chengyuan, YANG Xiaoli, CHENG Jianbo, JIA Yuke, YANG Shubin. High-efficiency Biogenic Calcium Carbonate for Adsorption of Pb(II) and Methyl Orange from Wastewater[J]. Journal of Inorganic Materials, 2020, 35(3): 315-323.
Element | Na | Mg | Al | Si | P | S | Cl | K | Ca | Fe | Cu | Sr |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mass fraction/wt% | 1.10 | 0.28 | 0.04 | 0.11 | 0.09 | 0.21 | 0.29 | 0.02 | 97.43 | 0.07 | 0.03 | 0.33 |
Oxide | Na2O | MgO | Al2O3 | SiO2 | P2O5 | SO3 | Cl | K2O | CaO | Fe2O3 | CuO | SrO |
Mass fraction/wt% | 1.25 | 0.39 | 0.07 | 0.19 | 0.17 | 0.43 | 0.24 | 0.02 | 96.92 | 0.06 | 0.02 | 0.24 |
Table 1 XRF results of oyster shell
Element | Na | Mg | Al | Si | P | S | Cl | K | Ca | Fe | Cu | Sr |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mass fraction/wt% | 1.10 | 0.28 | 0.04 | 0.11 | 0.09 | 0.21 | 0.29 | 0.02 | 97.43 | 0.07 | 0.03 | 0.33 |
Oxide | Na2O | MgO | Al2O3 | SiO2 | P2O5 | SO3 | Cl | K2O | CaO | Fe2O3 | CuO | SrO |
Mass fraction/wt% | 1.25 | 0.39 | 0.07 | 0.19 | 0.17 | 0.43 | 0.24 | 0.02 | 96.92 | 0.06 | 0.02 | 0.24 |
Adsorbents | BET area/ (m2·g-1) | Pore size/nm | Zeta potential/mV | Size/ nm |
---|---|---|---|---|
Oyster shell | 4.32 | 6.53 | -31.0 | 836 |
Calcined oyster shell | 4.93 | 6.22 | -19.1 | 4156 |
Table 2 Physical property of oyster and calcined oyster
Adsorbents | BET area/ (m2·g-1) | Pore size/nm | Zeta potential/mV | Size/ nm |
---|---|---|---|---|
Oyster shell | 4.32 | 6.53 | -31.0 | 836 |
Calcined oyster shell | 4.93 | 6.22 | -19.1 | 4156 |
Fig. 2 Effect of adsorption time on the sorption of Pb(II) (A) and MO (B) by bio-CaCO3 T=25 ℃, [Pb(II)]initial =753×10-6, m/V=0.2 g/L, and [NaClO4]=0.01 mol/L, pH=5.0
Fig. 3 Pseudo-first-order (A), pseudo-second-order (B), and Intraparticle diffusion model (C) fitting for Pb(II) sorption by bio-CaCO3 T=25 ℃, [Pb(II)]initial=753×10-6, msorbent/Vsolvent=0.2 g/L, and [NaClO4]= 0.01 mol/L
Pseudo-first-order model | Pseudo-second-order model | ||||
---|---|---|---|---|---|
R2 | κ1/min-1 | qe/(mg∙g-1) | R2 | κ2/min-1 | qe/(mg∙g-1) |
0.477 | 0.00225 | 600.94 | 0.998 | 2.61×10-5 | 2092.05 |
Table 3 Kinetic parameters of Pb(II) sorption by bio-CaCO3
Pseudo-first-order model | Pseudo-second-order model | ||||
---|---|---|---|---|---|
R2 | κ1/min-1 | qe/(mg∙g-1) | R2 | κ2/min-1 | qe/(mg∙g-1) |
0.477 | 0.00225 | 600.94 | 0.998 | 2.61×10-5 | 2092.05 |
Kd1/(mg∙g-1∙min-1/2) | Kd2/(mg∙g-1∙min-1/2) | Kd3/(mg∙g-1∙min-1/2) | C1 | C2 | C3 | R12 | R22 | R32 |
---|---|---|---|---|---|---|---|---|
470.71 | 77.0 | 8.55 | -220.39 | 1034.38 | 1747.0 | 1.0 | 0.95 | 0.78 |
Table 4 Intraparticle diffusion model constants and correlation coefficient for Pb(II) sorption by bio-CaCO3
Kd1/(mg∙g-1∙min-1/2) | Kd2/(mg∙g-1∙min-1/2) | Kd3/(mg∙g-1∙min-1/2) | C1 | C2 | C3 | R12 | R22 | R32 |
---|---|---|---|---|---|---|---|---|
470.71 | 77.0 | 8.55 | -220.39 | 1034.38 | 1747.0 | 1.0 | 0.95 | 0.78 |
T/℃ | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
Qm/ (mg∙g-1) | KL/ (L∙mg-1) | R2 | KF/ (mg∙g-1) | n | R2 | |
25 | 1775.33 | 0.041 | 0.992 | 415.3 | 4.1 | 0.898 |
35 | 1415.94 | 0.059 | 0.998 | 441.1 | 5.1 | 0.876 |
50 | 1237.35 | 0.063 | 0.986 | 421.8 | 5.6 | 0.885 |
Table 5 Parameters of Pb(II) sorption by bio-CaCO3 for Langmuir and Freundlich constants models
T/℃ | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
Qm/ (mg∙g-1) | KL/ (L∙mg-1) | R2 | KF/ (mg∙g-1) | n | R2 | |
25 | 1775.33 | 0.041 | 0.992 | 415.3 | 4.1 | 0.898 |
35 | 1415.94 | 0.059 | 0.998 | 441.1 | 5.1 | 0.876 |
50 | 1237.35 | 0.063 | 0.986 | 421.8 | 5.6 | 0.885 |
Fig. 6 Plots of distribution coefficient against temperature for Pb(II) adsorption with different concentrations by bio-CaCO3 pH=5.0, m/V = 0.2 g/L and [NaClO4]= 0.01 mol/L
[Pb(II)]initial/ (mol∙L-1) | ΔHθ/ (kJ∙mol-1) | ΔSθ/ (J∙mol-1∙K-1) | ΔGθ/(kJ∙mol-1) | ||
---|---|---|---|---|---|
298 K | 308 K | 323 K | |||
9.09×10-4 | -8.24 | -14.92 | -3.79 | -3.64 | -3.42 |
1.36×10-3 | -7.85 | -16.35 | -2.98 | -2.81 | -2.57 |
1.82×10-3 | -8.29 | -19.33 | -2.53 | -2.33 | -2.04 |
2.27×10-3 | -8.09 | -20.06 | -2.11 | -1.91 | -1.61 |
2.73×10-3 | -7.42 | -18.98 | -1.76 | -1.57 | -1.29 |
3.18×10-3 | -7.71 | -20.77 | -1.52 | -1.31 | -1.00 |
3.41×10-3 | -5.87 | -15.04 | -1.39 | -1.23 | -1.01 |
Average | -7.64 | -17.92 | -2.30 | -2.11 | -1.85 |
Table 6 Thermodynamic parameters for the adsorption of Pb(II) on bio-CaCO3
[Pb(II)]initial/ (mol∙L-1) | ΔHθ/ (kJ∙mol-1) | ΔSθ/ (J∙mol-1∙K-1) | ΔGθ/(kJ∙mol-1) | ||
---|---|---|---|---|---|
298 K | 308 K | 323 K | |||
9.09×10-4 | -8.24 | -14.92 | -3.79 | -3.64 | -3.42 |
1.36×10-3 | -7.85 | -16.35 | -2.98 | -2.81 | -2.57 |
1.82×10-3 | -8.29 | -19.33 | -2.53 | -2.33 | -2.04 |
2.27×10-3 | -8.09 | -20.06 | -2.11 | -1.91 | -1.61 |
2.73×10-3 | -7.42 | -18.98 | -1.76 | -1.57 | -1.29 |
3.18×10-3 | -7.71 | -20.77 | -1.52 | -1.31 | -1.00 |
3.41×10-3 | -5.87 | -15.04 | -1.39 | -1.23 | -1.01 |
Average | -7.64 | -17.92 | -2.30 | -2.11 | -1.85 |
Adsorbents | Cs max/(mg·g-1) | pH | T/K | Ref. |
---|---|---|---|---|
Activated carbon | 21.80 | 6.0 | 303 | [30] |
GMZ bentonite | 23.83 | 5.2 | 293 | [31] |
S3.9%-g-C3N4 | 52.63 | 4.5 | 328 | [32] |
GO | 937.65 | 4.4 | 298 | [33] |
r-GO | 92.99 | 4.4 | 298 | [33] |
Tianjin oyster shell without calcination | 1591 | 5.0 | 298 | [14] |
Guangzhou calcined oyster shell | 1067 | ~7 | 298 | [13] |
Rushan calcined oyster shell | 1775 | 5.0 | 298 | This work |
Table 7 Comparison of Pb(II) adsorption capacity of Bio-CaCO3 with other adsorbents
Adsorbents | Cs max/(mg·g-1) | pH | T/K | Ref. |
---|---|---|---|---|
Activated carbon | 21.80 | 6.0 | 303 | [30] |
GMZ bentonite | 23.83 | 5.2 | 293 | [31] |
S3.9%-g-C3N4 | 52.63 | 4.5 | 328 | [32] |
GO | 937.65 | 4.4 | 298 | [33] |
r-GO | 92.99 | 4.4 | 298 | [33] |
Tianjin oyster shell without calcination | 1591 | 5.0 | 298 | [14] |
Guangzhou calcined oyster shell | 1067 | ~7 | 298 | [13] |
Rushan calcined oyster shell | 1775 | 5.0 | 298 | This work |
[1] | YANG S B, HU J, CHEN C L , et al. Mutual effects of Pb(II), and humic acid adsorption on multiwalled carbon nanotubes/polyacrylamide composites from aqueous solutions. Environmental Science & Technology, 2011,45(8):3621-3627. |
[2] | LIU X L, MA R, WANG X X , et al. Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: a review. Environmental Pollution, 2019,252:62-73. |
[3] | REDDY K R, HASSAN M, GOMES V G . Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis. Applied Catalysis a-General, 2015,489:1-16. |
[4] | ZHU Y, MURALI S, CAI W , et al. Graphene and graphene oxide: synthesis, properties, and applications. Advanced Materials, 2010,22(35):3906-3924. |
[5] | DENG Q, LU L X, ZHANG R R . Adsorption property of oyster shell powder to Cu 2+ . Guangzhou Chemical Industry, 2016,44(23):63-65. |
[6] | XU CONG-BIN, YANG WEN-JIE, SUN HONG-LIANG , et al. Performance and mechanism of Pb(II) removal by expanded graphite loaded with Zero-valent iron. Journal of Inorganic Materials, 2018,33(01):41-47. |
[7] | SUN Q, QI Q, ZHANG J , et al. Structure and adsorption property of magnetic ZnFe2O4-halloysite composite material. Journal of Inorganic Materials, 2018,33(4):390-396. |
[8] | WANG N, PANG H W, YU S J , et al. Investigation of adsorption mechanism of layered double hydroxides and their composites on radioactive uranium: a review. Acta Chimica Sinica, 2019,77(2):143-152. |
[9] | YANG S, HAN C, WANG X , et al. Characteristics of cesium ion sorption from aqueous solution on bentonite- and carbon nanotube- based composites. Journal of Hazardous Materials, 2014,274:46-52. |
[10] | AHMAD M, RAJAPAKSHA A U, LIM J E , et al. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 2014,99:19-33. |
[11] | WANG X X, CHEN L, WANG L , et al. Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Science China Chemistry, 2019,62(8):933-967. |
[12] | YANG S, OKADA N, NAGATSU M . The highly effective removal of Cs(+) by low turbidity chitosan-grafted magnetic bentonite. Journal of Hazardous Materials, 2016,301:8-16. |
[13] | ZHOU X L, LIU W Z, ZHANG J , et al. Biogenic calcium carbonate with hierarchical organic inorganic composite structure enhancing the removal of Pb(II) from wastewater. ACS Applied Materials & Interfaces, 2017,9(41):35785-35793. |
[14] | DU Y, LIAN F, ZHU L . Biosorption of divalent Pb, Cd and Zn on aragonite and calcite mollusk shells. Environmental Pollution, 2011,159(7):1763-1768. |
[15] | CHANDRASIRI C, YEHDEGO T, PEETHAMPARAN S . Synthesis and characterization of bio-cement from conch shell waste. Construction and Building Materials, 2019,212:775-786. |
[16] | CHEN X L, ZHANG X Y, WANG Y , et al. Synergistic fire safety improvement between oyster shell powder and ammonium polyphosphate in TPU composites. Polymers for Advanced Technologies, 2019,30(7):1564-1575. |
[17] | CHEN X L, ZHANG X Y, WANG W D , et al. Fire-safe agent integrated with oyster shell and melamine polyphosphate for thermoplastic polyurethane. Polymers for Advanced Technologies, 2019,30(7):1576-1588. |
[18] | DICKINSON G H, IVANINA A V, MATOO O B , et al. Interactive effects of salinity and elevated CO2 levels on juvenile eastern oysters, Crassostrea virginica. Journal of Experimental Biology, 2012,215(1):29-43. |
[19] | WU Q, CHEN J, CLARK M , et al. Adsorption of copper to different biogenic oyster shell structures. Applied Surface Science, 2014,311:264-272. |
[20] | YEN H Y, LI J Y . Process optimization for Ni(II) removal from wastewater by calcined oyster shell powders using Taguchi method. Journal of Environmental Management, 2015,161:344-349. |
[21] | YANG S B, DU X D . Enhanced dispersion of carbon nanotubes in water by plasma induced graft poly(N,N-dimethylacrylamide) and its application in humic acid capture. Journal of Molecular Liquids, 2019,277:380-387. |
[22] | NIU Z W, WEI X Y, QIANG S R , et al. Spectroscopic studies on U(VI) incorporation into CaCO3: effects of aging time and U(VI) concentration. Chemosphere, 2019,220:1100-1107. |
[23] | YANG S, ZHAO D, ZHANG H , et al. Impact of environmental conditions on the sorption behavior of Pb(II) in Na-bentonite suspensions. Journal of Hazardous Materials, 2010,183(1/2/3):632-640. |
[24] | WANG XIANG-XUE, YU SHU-JUN, XIANG-KE W . Removal of radionuclides by metal-organic framework-based materials. Journal of Inorganic Materials, 2019,34(1):17-26. |
[25] | TRAVLOU N A, KYZAS G Z, LAZARIDIS N K , et al. Functionalization of graphite oxide with magnetic chitosan for the preparation of a nanocomposite dye adsorbent. Langmuir, 2013,29(5):1657-1668. |
[26] | TAHIR S S, RAUF N . Thermodynamic studies of Ni(II) adsorption onto bentonite from aqueous solution. The Journal of Chemical Thermodynamics, 2003,35(12):2003-2009. |
[27] | SHEN J, SCHAFER A . Removal of fluoride and uranium by nanofiltration and reverse osmosis: a review. Chemosphere, 2014,117:679-691. |
[28] | LIU Z, SHEN Q, ZHANG Q , et al. The removal of lead ions of the aqueous solution by calcite with cotton morphology. Journal of Materials Science, 2014,49(15):5334-5344. |
[29] | CHEN W, LU Z, XIAO B , et al. Enhanced removal of lead ions from aqueous solution by iron oxide nanomaterials with cobalt and nickel doping. Journal of Cleaner Production, 2019,211:1250-1258. |
[30] | RAO M M, RAMANA D K, SESHAIAH K , et al. Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls. Journal of Hazardous Materials, 2009,166(2):1006-1013. |
[31] | XU D, TAN X L, CHEN C L , et al. Adsorption of Pb(II) from aqueous solution to MX-80 bentonite: effect of pH, ionic strength, foreign ions and temperature. Applied Clay Science, 2008,41(1):37-46. |
[32] | LI X, XING J L, ZHANG C L , et al. Adsorption of lead on sulfur- doped graphitic carbon nitride nanosheets: experimental and theoretical calculation study. ACS Sustainable Chemistry & Engineering, 2018,6(8):10606-10615. |
[33] | ZHANG J, XIE X, LIANG C , et al. Characteristics and mechanism of Pb(II) adsorption/desorption on GO/r-GO under sulfide-reducing conditions. Journal of Industrial And Engineering Chemistry, 2019,73:233-240. |
[1] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[2] | WU Guangyu, SHU Song, ZHANG Hongwei, LI Jianjun. Enhanced Styrene Adsorption by Grafted Lactone-based Activated Carbon [J]. Journal of Inorganic Materials, 2024, 39(4): 390-398. |
[3] | XIE Tian, SONG Erhong. Effect of Elastic Strains on Adsorption Energies of C, H and O on Transition Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(11): 1292-1300. |
[4] | CHAO Shaofei, XUE Yanhui, WU Qiong, WU Fufa, MUHAMMAD Sufyan Javed, ZHANG Wei. Efficient Potassium Storage through Ti-O-H-O Electron Fast Track of MXene Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(11): 1212-1220. |
[5] | CHEN Haiyan, TANG Zhipeng, YIN Liangjun, ZHANG Linbo, XU Xin. Low-frequency Microwave Absorption of CIPs@Mn0.8Zn0.2Fe2O4-CNTs Composites [J]. Journal of Inorganic Materials, 2024, 39(1): 71-80. |
[6] | WU Lin, HU Minglei, WANG Liping, HUANG Shaomeng, ZHOU Xiangyuan. Preparation of TiHAP@g-C3N4 Heterojunction and Photocatalytic Degradation of Methyl Orange [J]. Journal of Inorganic Materials, 2023, 38(5): 503-510. |
[7] | MA Xiaosen, ZHANG Lichen, LIU Yanchao, WANG Quanhua, ZHENG Jiajun, LI Ruifeng. 13X@SiO2: Synthesis and Toluene Adsorption [J]. Journal of Inorganic Materials, 2023, 38(5): 537-543. |
[8] | GUO Chunxia, CHEN Weidong, YAN Shufang, ZHAO Xueping, YANG Ao, MA Wen. Adsorption of Arsenate in Water by Zirconia-halloysite Nanotube Material [J]. Journal of Inorganic Materials, 2023, 38(5): 529-536. |
[9] | WANG Shiyi, FENG Aihu, LI Xiaoyan, YU Yun. Pb (II) Adsorption Process of Fe3O4 Supported Ti3C2Tx [J]. Journal of Inorganic Materials, 2023, 38(5): 521-528. |
[10] | YU Yefan, XU Ling, NI Zhongbing, SHI Dongjian, CHEN Mingqing. Prussian Blue Modified Biochar: Preparation and Adsorption of Ammonia Nitrogen from Sewage [J]. Journal of Inorganic Materials, 2023, 38(2): 205-212. |
[11] | LING Jie, ZHOU Anning, WANG Wenzhen, JIA Xinyu, MA Mengdan. Effect of Cu/Mg Ratio on CO2 Adsorption Performance of Cu/Mg-MOF-74 [J]. Journal of Inorganic Materials, 2023, 38(12): 1379-1386. |
[12] | TANG Ya, SUN Shengrui, FAN Jia, YANG Qingfeng, DONG Manjiang, KOU Jiahui, LIU Yangqiao. PEI Modified Hydrated Calcium Silicate Derived from Fly Ash and Its adsorption for Removal of Cu (II) and Catalytic Degradation of Organic Pollutants [J]. Journal of Inorganic Materials, 2023, 38(11): 1281-1291. |
[13] | DAI Jieyan, FENG Aihu, MI Le, YU Yang, CUI Yuanyuan, YU Yun. Adsorption Mechanism of NaY Zeolite Molecular Adsorber Coating on Typical Space Contaminations [J]. Journal of Inorganic Materials, 2023, 38(10): 1237-1244. |
[14] | WANG Hongning, HUANG Li, QING Jiang, MA Tengzhou, HUANG Weiqiu, CHEN Ruoyu. Mesoporous Organic-inorganic Hybrid Siliceous Hollow Spheres: Synthesis and VOCs Adsorption [J]. Journal of Inorganic Materials, 2022, 37(9): 991-1000. |
[15] | JI Yongji, LIU Dong, LI Qiang. Thermodynamic Efficiency Limits of Semitransparent Solar Cells [J]. Journal of Inorganic Materials, 2022, 37(2): 204-208. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||