Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (5): 617-622.DOI: 10.15541/jim20190225
Special Issue: 2020年能源材料论文精选(一) :金属离子电池&燃料电池; 【虚拟专辑】钙钛矿材料(2020~2021)
• RESEARCH LETTERS • Previous Articles
XIA Tian1,2,MENG Xie1,LUO Ting1,ZHAN Zhongliang1()
Received:
2019-05-15
Revised:
2019-05-29
Published:
2020-05-20
Online:
2019-06-17
Supported by:
CLC Number:
XIA Tian, MENG Xie, LUO Ting, ZHAN Zhongliang. La 3+-substituted Sr2Fe1.5Ni0.1Mo0.4O6-δ as Anodes for Solid Oxide Fuel Cells[J]. Journal of Inorganic Materials, 2020, 35(5): 617-622.
Fig. 1 Room temperature XRD patterns of LaxSFNM (x=0, 0.1, 0.2, 0.3, 0.4) (a) After calcination at 1200 ℃ for 12 h; (b) Reduced in wet H2 (3vol% H2O) at 750 ℃ for 12 h
Fig. 2 Surface morphologies of (a) SFNM ceramic pellets before reduction and (b-f) LaxSFNM ceramic pellets after reduction in humidified 10vol% H2/N2 (3vol% H2O) at 750 ℃ for 4 h (b) SFNM; (c) La0.1SFNM; (d) La0.2SFNM; (e) La0.3SFNM; (f) La0.4SFNM
Fig. 3 (a) SEM image of reduced La0.3SFNM ceramic surface and (b-g) elemental mapping of La (b, blue), Sr (c, magenta), Fe (d, red), Ni (e, yellow), Mo (f, brown) and O (g, green)
Fig. 4 (a) Nyquist and (b) Bode plots of impedance data for symmetrical anode fuel cells, i.e., Nano-LaxSFNM@LSGM | LSGM | Nano-LaxSFNM@LSGM, operating in humidified H2 (3vol% H2O, 100 mL·min-1) at 750 ℃, (c) distributions of relation time (DRT) plots of the data shown in (a) and (b)
Fig. 5 (a) Cross-sectional micrograph of measured fuel cell (Nano-La0.3SFNM@LSGM|LSGM|Nano-SBSCO@LSGM), and (b) high magnification view of the impregnated catalyst
Fig. 6 (a) Voltage and power density versus current density for the functioning fuel cell (Nano-La0.3SFNM@LSGM|LSGM| Nano-SBSCO@LSGM), measured in 97vol% H2-3vol% H2O at 100 sccm; (b) Peak power densities at different temperatures for single cells with varied LaxSFNM anodes
Fig. 7 Cell voltage as a function of operation time for the single fuel cell (Nano-La0.3SFNM@LSGM|LSGM|Nano-SBSCO@LSGM), operated under constant current density at 550 and 650 ℃
[1] |
CASSIDY M, LINDSAY G, KENDALL K . The reduction of nickel-zirconia cermet anodes and the effects on supported thin electrolytes. Journal of Power Sources, 1996,61(1):189-192.
DOI URL |
[2] |
SLATER R P, FAGG D P, IRVINE J T S . Synthesis and electrical characterization of doped perovskite titanates as potential anode materials for solid oxide fuel cells. Journal of Materials Chemistry, 1997,7(12):2495-2498.
DOI URL |
[3] |
TAO S, IRVINE J T S . A redox-stable efficient anode for solid- oxide fuel cells. Nature Materials, 2003,2(5):320.
DOI URL PMID |
[4] |
LIU Q, DONG X, XIAO G , et al. A novel electrode material for symmetrical SOFCs. Advanced Materials, 2010,22(48):5478-5482.
DOI URL PMID |
[5] |
DU Z H, ZHAO H L, LI S M , et al. Exceptionally high performance anode material based on lattice structure decorated double perovskite Sr2FeMo2/3Mg1/3O6-δ for solid oxide fuel cells. Advanced Energy Materials, 2018,8(18):1800062.
DOI URL |
[6] |
YANG G, FENG J, SUN W , et al. The characteristic of strontium- site deficient perovskites SrxFe1.5Mo0.5O6-δ(x=1.9-2.0) as intermediate-temperature solid oxide fuel cell cathodes. Journal of Power Sources, 2014,268:771-777.
DOI URL |
[7] |
HE B, ZHAO L, SONG S , et al. Sr2Fe1.5Mo0.5O6-δ-Sm0.2Ce0.8O1.9 composite anodes for intermediate-temperature solid oxide fuel cells. Journal of The Electrochemical Society, 2012,159(5):B619-B626.
DOI URL |
[8] |
XIAO G L, CHEN F L . Ni modified ceramic anodes for direct- methane solid oxide fuel cells. Electrochemistry Communications, 2011,13(1):57-59.
DOI URL |
[9] |
XIAO G L, JIN C, LIU Q , et al. Ni modified ceramic anodes for solid oxide fuel cells. Journal of Power Sources, 2012,201:43-48.
DOI URL |
[10] |
LIU Z, LIU B, DING D , et al. Fabrication and modification of solid oxide fuel cell anodes via wet impregnation/infiltration technique. Journal of Power Sources, 2013,237:243-259.
DOI URL |
[11] | TSEKOURAS G, NEAGU D, IRVINE J T S . Step-change in high temperature steam electrolysis performance of perovskite oxide cathodes with exsolution of B-site dopants. Energy Environ. Sci., 2012,6(1):256-266. |
[12] |
NEAGU D, TSEKOURAS G, MILLER D N , et al. In situ growth of nanoparticles through control of non-stoichiometry. Nature Chemistry, 2013,5(11):916-923.
DOI URL PMID |
[13] |
DU Z, ZHAO H, YI S , et al. High-performance anode material Sr2FeMo0.65Ni0.35O6-δ with in situ exsolved nanoparticle catalyst. ACS Nano, 2016,10(9):8660-8669.
DOI URL PMID |
[14] |
GAO Y, WANG J, LYU Y Q , et al. In situ growth of Pt3Ni nanoparticles on an A-site deficient perovskite with enhanced activity for the oxygen reduction reaction. J. Mater. Chem. A, 2017,5(14):6399-6404.
DOI URL |
[15] |
MAHATO N, BANERJEE A, GUPTA A , et al. Progress in material selection for solid oxide fuel cell technology: a review. Prog. Mater. Sci., 2015,72:141-337.
DOI URL |
[16] |
WANG Y, LIU T, LI M , et al. Exsolved Fe-Ni nano-particles from Sr2Fe1.3Ni0.2Mo0.5O6 perovskite oxide as a cathode for solid oxide steam electrolysis cells. Journal of Materials Chemistry A, 2016,4(37):14163-14169.
DOI URL |
[17] |
ZHU T, TROIANI H E, MOGNI L V , et al. Ni-substituted Sr(Ti,Fe)O3 SOFC anodes: achieving high performance via metal alloy nanoparticle exsolution. Joule, 2018,2(3):478-496.
DOI URL |
[18] |
MYUNG J, NEAGU D, MILLER D N , et al. Switching on electrocatalytic activity in solid oxide cells. Nature, 2016,537(7621):528-531.
DOI URL PMID |
[19] |
LEE W, HAN J W, CHEN Y , et al. Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. J. Am. Chem. Soc., 2013,135(21):7909-7925.
DOI URL PMID |
[20] |
GÁLVEZ M E, JACOT R, SCHEFFE J , et al. Physico-chemical changes in Ca, Sr and Al-doped La-Mn-O perovskites upon thermochemical splitting of CO2 via redox cycling. Physical Chemistry Chemical Physics, 2015,17(9):6629-6634.
DOI URL PMID |
[21] |
MUÑOZ-GARCÍA A B, BUGARIS D E, PAVONE M , et al. Unveiling structure-property relationships in Sr2Fe1.5Mo0.5O6-δ, an electrode material for symmetric solid oxide fuel cells. Journal of the American Chemical Society, 2012,134(15):6826-6833.
DOI URL |
[22] |
MENG X, HAN D, WU H , et al. Characterization of SrFe0.75Mo0.25O3-δ-La0.9Sr0.1Ga0.8Mg0.2O3-δ composite cathodes prepared by infiltration. Journal of Power Sources, 2014,246:906-911.
DOI URL |
[23] |
XIAO G, LIU Q, ZHAO F , et al. Sr2Fe1.5Mo0.5O6 as cathodes for intermediate-temperature solid oxide fuel cells with La0.8Sr0.2Ga0.87Mg0.13O3 electrolyte. J. Electrochem. Soc., 2011,158(5):B455-B460.
DOI URL |
[24] |
SACCOCCIO M, WAN T H, CHEN C , et al. Optimal regularization in distribution of relaxation times applied to electrochemical impedance spectroscopy: ridge and Lasso regression methods - a theoretical and experimental study. Electrochimica Acta, 2014,147:470-482.
DOI URL |
[25] |
DU Z H, ZHAO H L, YANG C Y , et al. Optimization of strontium molybdate based composite anode for solid oxide fuel cells. J. Power Sources, 2015,274:568-574.
DOI URL |
[26] | MENG X, LIU X J, HAN D , et al. Symmetrical solid oxide fuel cells with impregnated SrFe0.75Mo0.25O3-δ electrodes. J. Power Sources, 2014,252:58-63. |
[1] | GUO Tianmin, DONG Jiangbo, CHEN Zhengpeng, RAO Mumin, LI Mingfei, LI Tian, LING Yihan. Enhanced Compatibility and Activity of High-entropy Double Perovskite Cathode Material for IT-SOFC [J]. Journal of Inorganic Materials, 2023, 38(6): 693-700. |
[2] | ZHENG Shiyou, DONG Fei, PANG Yuepeng, HAN Pan, YANG Junhe. Research Progress on Nanostructured Metal Oxides as Anode Materials for Li-ion Battery [J]. Journal of Inorganic Materials, 2020, 35(12): 1295-1306. |
[3] | GUO Si-Lin, KANG Shuai, LU Wen-Qiang. Ge Nanoparticles in MXene Sheets: One-step Synthesis and Highly Improved Electrochemical Property in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2020, 35(1): 105-111. |
[4] | Yi TAN, Kai WANG. Silicon-based Anode Materials Applied in High Specific Energy Lithium-ion Batteries: a Review [J]. Journal of Inorganic Materials, 2019, 34(4): 349-357. |
[5] | XIA Tian, MENG Xie, LUO Ting, ZHAN Zhong-Liang. Synthesis and Evaluation of Ca-doped Sr2Fe1.5Mo0.5O6-δ as Symmetrical Electrodes for High Performance Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2019, 34(10): 1109-1114. |
[6] | TAN Yi, XUE Bing. Research Progress on Lithium Titanate as Anode Material in Lithium-ion Battery [J]. Journal of Inorganic Materials, 2018, 33(5): 475-482. |
[7] | CAI Ya-Ling, LI Ya-Fei, WANG Zeng-Mei, ZHANG Yao, CHEN Jian, GUO Xin-Li. CTAB-assisted Synthesis of MoS2/C Nano-flowers with Improved Electrochemical Performances for Lithium Ion Batteries [J]. Journal of Inorganic Materials, 2016, 31(12): 1289-1294. |
[8] | LIU Jian-Zhe, GUO Peng-Fei. VS2 Nanosheets: A Potential Anode Materiral for Li-ion Batteriers [J]. Journal of Inorganic Materials, 2015, 30(12): 1339-1344. |
[9] | LIU Ya-Di, YUAN Chun, ZHOU Yu-Cun, ZOU Jie, XIN Xian-Shuang, WANG Shao-Rong. Composite Anodes with Ni Impregnated LST-SSZ for Direct Methane Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2014, 29(11): 1121-1126. |
[10] | XIONG Ming-Wen, YIN Yi-Mei, YUAN Xian-Xia, MA Zi-Feng. Preparation and Performance of SrCo1-xGaxO3-δ Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2013, 28(7): 713-719. |
[11] | HONG Tao, WANG Yao, XIA Chang-Rong. Nano-structure Effect on Solid State Fuel Cells Cathode Durability [J]. Journal of Inorganic Materials, 2013, 28(11): 1187-1194. |
[12] | GONG Xun, MENG Xiu-Xia, YANG Nai-Tao, TAN Xiao-Yao, YIN Yi-Mei, MA Zi-Feng. Electrolyte Thickness Control and Its Effect on YSZ/Ni-YSZ Dual-layer Hollow Fibres [J]. Journal of Inorganic Materials, 2013, 28(10): 1108-1114. |
[13] | GUO De-Chao, ZENG Xie-Rong, DENG Fei, ZOU Ji-Zhao, SHENG Hong-Chao. Preparation and Electrochemical Performance of Carbon nanotubes/Micro-expanded?Graphite Composite Anodes for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2012, 27(10): 1035-1041. |
[14] | GUO Wei-Min, PEI Jun-Yan, LIANG Hong-Yu, LIU Jiang. Preparation and Performance of Anode-supported LaGaO3-based Electrolyte Solid Oxide Fuel Cells with Sm-doped CeO2 Buffer Layers [J]. Journal of Inorganic Materials, 2011, 26(7): 685-690. |
[15] | ZHANG Xin- Long,HU Guo- Rong,PENG Zhong- Dong. Preparation and Effects of Mo-doping on the Electrochemical Properties of Spinel Li4Ti5O12 as Anode Material for Lithium Ion Battery [J]. Journal of Inorganic Materials, 2011, 26(4): 443-448. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||