[1] Armand M, Tarascon J M. Building better batteries. Nature, 2008, 451: 652-657.[2] CHEN Chang-Guo, CHEN Jia, TANG Yan-Qiu, et al. Recent progress in the structure of carbon cathode materials for lithium ion batteries. Journal of Inorganic Materials, 2003, 18(6): 1153-1157.[3] Landi B J, Ganter M J, Cress C D, et al. Carbon nanotubes for lithium ion batteries. Energy Environ. Sci., 2009, 2: 638-654.[4] Endo M, Kim Y A, Hayashi T, et al. Vapor-grown carbon fibers (VGCFs) basic properties and their battery applications. Carbon, 2001, 39(9): 1287-1297. [5] Sethuraman V A, Hardwick L J, Srinivasan V, et al. Surface structural disordering in graphite upon lithium intercalation/deintercalation. J. Power Sources, 2010, 195(11): 3655-3660.[6] LIU Yu, WANG Bao-Feng, XIE Jing-Ying, et al. Electrochemical characteristic of SEI in secondary lithium batteries. Journal of Inorganic Materials, 2003, 18(2): 307-312.[7] Lu M, Cheng H, Yang Y. A comparison of solid electrolyte interphase (SEI) on the artificial graphite anode of the aged and cycled commercial lithium ion cells. Electrochimica Acta, 2008, 53: 3539-3546. [8] Moon S H, Jin W J, Kim T R, et al. Performance-of graphite electrode modified with carbon nanofibers for lithium ion secondary battery. J. Ind. Eng. Chem., 2005, 11(4): 594-602.[9] LIU Ye-Xiang, ZHOU Xiang-Yang, LI Jie, et al. Li+ intercalation/ deintercalation process in natural graphite. The Chinese Journal of Nonferrous Metals, 2002, 12(6): 1257-1262. [10] Nozahi H, Nagarka K, Hoshi K, et al. Carbon-coated graphite for anode of lithium ion rechargeable batteries: carbon coating conditions and precursors. J. Power Sources, 2009, 194(1): 486-493.[11] Jang S M, Miyawaki J,Tsuji U, et al. Preparation of a carbon nanofiber/natural graphite composite and an evaluation of its electrochemical properties as an anode material for a Li-ion battery. New Carbon Materials, 2010, 25(2): 89-95.[12] ZHOU De-Feng, Ma Yue, ZHAO Yan-Ling, et al. Electrochemical performance of the composite materials of nano-carbon and graphite- carbon. Journal of Inorganic Materials, 2004, 19(5): 1111-1117.[13] Makovicka J,Sedlarikova M, Arenillas A, et al. Expanded graphite as an intercaltion anode material for lithium systems. J. Solid State Electrochem, 2009, 13(9): 1467-1471.[14] Yang S B, Song H H, Chen X H. Electrochemical performance of expanded mesocarbon microbeads as anode material for lithium- ion batteries. Electrochem. Commun., 2006, 8(1): 137-142.[15] 曾燮榕, 王明福, 谢盛辉, 等. 可膨胀石墨的制备方法. 中国发明专利, C01B31/04, 200410027920, 2005.03.16.[16] YANG Shao-Bin, FEI Xiao-Fei, JIANG Na. Influences of increasing interlayer space on the properties of lithium storage of natural graphite. Acta Chimica Sinica, 2009, 67(17): 1995-2000.[17] Wei Xing-Hai, Zhang Jin-Xi, Shi Jing-Li, et al. Preparation of sulfur- free highly expanded graphite. New Carbon Materials, 2004, 19(1): 45-47.[18] Novak P, Ufheil J, Buqa H, et al. The importance of the active surface area of graphite materials in the first lithium intercalation. J. Power Sources, 2007, 174(2): 1082-1085.[19] Lahiri I, Oh S W, Hwang J Y, et al. High capacity and excellent stability of lithium ion battery anode using interface-controlled binder-free multiwall carbon nanotubes grown on copper. Nano, 2010, 4(6): 3440-3446.[20] Tokumitsu K, Fujimoto H, Mabuchi A, et al. High capacity carbon anode for Li-ion battery: a theoretical explanation. Carbon, 1999, 37(10): 1599-1605.[21] Wang G X, Shen X P, Yao J, et al. Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon, 2009, 47(8): 2049-2053.[22] Abouimrane A, Compton O C, Amine K, et al. Non-annealed graphene paper as a binder-free anode for lithium-ion batteries. J. Phys. Chem. 2010, 114(29): 12800-12804.[23] Eom J Y, Park J W, Kwon H S. Effects of ball-milling on lithium insertion into multi-walled carbon nanotubes synthesized by thermal chemical vapour deposition. J. Power Sources, 2006, 157(1): 507-514.[24] Zou L, Kang F Y, Zheng Y P, et al. Modi-ed natural -ake graphite with high cycle performance as anode material in lithium ion batteries. Electrochemical Acta, 2009, 54(15): 3930-3934.[25] Sawai K, Ohzuku T. Factors affecting rate capability of graphite electrodes for lithium-ion batteries. J. Electrochemical. Soc., 2003, 150(6): A674-1-5.[26] ZHANG Xu-Gang, LIU Min, WANG Zuo-Ming, et al. Applications of carbon nanotube composite as anode conductive additives in lithium ion batteries. Carbon Techniques, 2008, 27(4): 10-13. |