Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (8): 873-878.DOI: 10.15541/jim20180428
Previous Articles Next Articles
GUO Yang1,2,ZHANG Wei2(),ZHOU Xing2(
),DENG Lei2
Received:
2018-09-14
Revised:
2019-02-02
Published:
2019-08-20
Online:
2019-05-29
Supported by:
CLC Number:
GUO Yang, ZHANG Wei, ZHOU Xing, DENG Lei. Oxidation Characteristics of Magnesium Diboride[J]. Journal of Inorganic Materials, 2019, 34(8): 873-878.
Sample | Theoretical combustion heat /(J·g-1) | Experimental combustion heat /(J·g-1) | Combustion efficiency /% |
---|---|---|---|
B | -58826 | -22465±114 | 38 |
MgB2 | -38781 | -23943±788 | 62 |
Table 1 Combustion heats and combustion efficiencies of amorphous boron and MgB2
Sample | Theoretical combustion heat /(J·g-1) | Experimental combustion heat /(J·g-1) | Combustion efficiency /% |
---|---|---|---|
B | -58826 | -22465±114 | 38 |
MgB2 | -38781 | -23943±788 | 62 |
Temperature /K | ${{n}_{\text{MgO}}}/{{n}_{{{\text{B}}_{\text{2}}}\text{O}}}_{_{\text{3}}}$ | Fraction of unoxidized Mg/mol% | Fraction of unoxidized boron/mol% | ${{n}_{\text{B}}}/{{n}_{\text{Mg}}}$ |
---|---|---|---|---|
1165 | 1.14 : 1 | 81.11 | 83.38 | 2.06 : 1 |
1300 | 3.04 : 1 | 22.73 | 74.62 | 6.56 : 1 |
1405 | 1.52 : 1 | 6.35 | 38.35 | 12.08 : 1 |
1520 | 1.26 : 1 | 2.14 | 22.30 | 20.89 : 1 |
Temperature /K | ${{n}_{\text{MgO}}}/{{n}_{{{\text{B}}_{\text{2}}}\text{O}}}_{_{\text{3}}}$ | Fraction of unoxidized Mg/mol% | Fraction of unoxidized boron/mol% | ${{n}_{\text{B}}}/{{n}_{\text{Mg}}}$ |
---|---|---|---|---|
1165 | 1.14 : 1 | 81.11 | 83.38 | 2.06 : 1 |
1300 | 3.04 : 1 | 22.73 | 74.62 | 6.56 : 1 |
1405 | 1.52 : 1 | 6.35 | 38.35 | 12.08 : 1 |
1520 | 1.26 : 1 | 2.14 | 22.30 | 20.89 : 1 |
Position | B/mol% | O/mol% | Mg/mol% |
---|---|---|---|
Internal | 11.78 | 51.22 | 37.00 |
External | — | 56.43 | 43.57 |
Table 3 EDS results of the internal and external oxide layer of MgB2 pellet
Position | B/mol% | O/mol% | Mg/mol% |
---|---|---|---|
Internal | 11.78 | 51.22 | 37.00 |
External | — | 56.43 | 43.57 |
[1] | MITSUNO M, KUWAHARA T, KOSAKA K , et al. Combustion of Metallized Propellants for Ducted Rockets. AIAA-87-1724, 1987. |
[2] | MIYAYAMA T, OSHIMA H, TOSHIYUKI S , et al. Improving Combustion of Boron Particles in Secondary Combustor of Ducted Rockets. AIAA 2006-5250, 2006. |
[3] | OBUCHI K, TANABE M, KUWAHARA T . Ignition Characteristics of Boron Particles in the Secondary Combustor of Ducted Rockets-Effects of Magnalium Particle Addition. AIAA 2008-943, 2008. |
[4] | LIU T K, LUH S P, PERNG H C . Effect of boron particles surface coating on combustion of solid propellants for ducted rockets. Propellants, Explosives, Pyrotechnics, 1991, 16(4):156-166. |
[5] | BOYD D D, CHILDS L B . Method of Coating Boron Particles with Ammonium Perchlorate. USP 3976521, 1976-8-24. |
[6] | LI S F, JIN R . Improvement of Combustion Characteristics of Solid Propellant with Coated Boron . AIAA 99-2633, 1999. |
[7] |
SHYU I M, LIU T K . Combustion characteristics of gap-coated boron particles and the fuel-rich solid propellant. Combustion and Flame, 1995,100(4):634-644.
DOI URL |
[8] | YEH C L . Ignition and Combustion of Boron Particles. Pennsylvania: The Pennsylvania State University, 1995. |
[9] |
YEH C L, KUO K K . Ignition and combustion of boron particles. Progress in Energy and Combustion Science, 1996,22(6):511-541.
DOI URL |
[10] | BESSER H L, STRECKER R. Overview of Boron Ducted Rocket Development during the Last Two Decades. Combustion of Boron- Based Solid Propellants and Solid Fuels. Boca Raton: Begell House Publishing Co. and CRC Press, 1993: 133-178. |
[11] |
LIU T K, SHYU I M, HSIA Y S . Effect of fluorinated graphite on combustion of boron and boron-based fuel-rich propellants. Journal of Propulsion and Power, 1996,12(1):26-33.
DOI URL |
[12] | MACRI B J . Process for Making Spheroidal Agglomerates. USP 3646174, 1972-2-29. |
[13] | MACRI B J . Boron-Fuel-Rich Propellant Compositions. USP 3986909, 1976-10-19. |
[14] | HSIEH W H, PERETZ A, HUANG I T ,et al. Combustion behavior of boron-based BAMO/NMMO fuel-rich solid propellants. Journal of Propulsion and Power, 1991,7(4):497-504. |
[15] | YANG A S, HUANG I T, HSIEH W H , et al. Burning-Rate Characteristics of Boron/[BAMO/NMMO] Fuel-Rich Solid Propellant Under Broad Ranges of Pressure and Temperature. Combustion of Boron-based Solid Propellants and Solid Fuels. Boca Raton: Begell House Publishing Co. and CRC Press, 1993: 412-426. |
[16] | HSIA H T S . Air-Augmented Combustion of Boron and Boron- Metal Alloys. AFRPL-TR-71-80, 1971. |
[17] | MESTWERDT R, SELZER H . The Combustion of a Boron- Lithium Compound with Respect to Air Augmented Rockets. AIAA 75-247, 1975. |
[18] |
MESTWERDT R, SELZER H . Experimental investigation of boron/ lithium combustion. AIAA Journal, 1976,14(1):100-102.
DOI URL |
[19] | MOTA J M, MARTINEZ M A, VELASCO F J , et al. A method of making boride. A method of making boride and vitreous compound by powder metallurgy. Journal of Materials Processing Technology, 2003, 143-144:764-768. |
[20] | MOTA J M, ABENOJAR J, MARTINEZ M A , et al. Borides and vitreous compounds sintered as high-energy fuels. Journal of Solid State Chemistry, 2004,117(2):619-627. |
[21] | MOTA J M, MARTINEZ M A, VELASCO F , et al. Preparation of aluminium boride by powder technology. Ceramics International, 2004,30(2):301-306. |
[22] | Ascharite Ores-determination of Boric Anhydride Content-Volumetric Method. HG/T 2956. 3-2001, 2001. |
[23] |
MUTLUER T, TIMUCIN M . Phase equilibria in the system MgO-B2O3. Journal of the American Ceramic Society, 1975,58(5/6):196-197.
DOI URL |
[24] | ZHANG XIAN-RUI, WANG YUAN-YUAN, CHEN TAO , et al. Thermal Oxidation Characteristics of Amorphous Boron Powder. The 29th Academic Annual Conference of Solid Propulsion Committee of Chinese Society of Astronautics,Ningbo, 2012: 611-614. |
[1] | ZHENG Yawen, ZHANG Cuiping, ZHANG Ruijie, XIA Qian, RU Hongqiang. Fabrication of Boron Carbide Ceramic Composites by Boronic Acid Carbothermal Reduction and Silicon Infiltration Reaction Sintering [J]. Journal of Inorganic Materials, 2024, 39(6): 707-714. |
[2] | HU Jiajun, WANG Kai, HOU Xinguang, YANG Ting, XIA Hongyan. Boron Phosphide with High Thermal Conductivity: Synthesis by Molten Salt Method and Thermal Management Performance [J]. Journal of Inorganic Materials, 2022, 37(9): 933-940. |
[3] | XIA Qian, SUN Shihao, ZHAO Yiliang, ZHANG Cuiping, RU Hongqiang, WANG Wei, YUE Xinyan. Effect of Boron Carbide Particle Size Distribution on the Microstructure and Properties of Reaction Bonded Boron Carbide Ceramic Composites by Silicon Infiltration [J]. Journal of Inorganic Materials, 2022, 37(6): 636-642. |
[4] | XIE Xue, WU Jianrong, CAI Xiaojun, HAO Junnian, ZHENG Yuanyi. Photothermal/pH Responsive B-CuS-DOX Nanodrug for Chemo-photothermal Synergistic Therapy of Tumor [J]. Journal of Inorganic Materials, 2021, 36(1): 81-87. |
[5] | ZHANG Wei, LIU Chen, CHEN Yuantao, WU Wangsuo. Removal of Boron from Water by Mg-Al-Ce Hydrotalcite Adsorption [J]. Journal of Inorganic Materials, 2020, 35(3): 337-344. |
[6] | LI Li, GUO Xiaojie, JIN Yang, CHEN Chaogui, Abdullah M Asiri, Hadi M Marwani, ZHAO Qingzhou, SHENG Guodong. Distinguished Cd(II) Capture with Rapid and Superior Ability using Porous Hexagonal Boron Nitride: Kinetic and Thermodynamic Aspects [J]. Journal of Inorganic Materials, 2020, 35(3): 284-292. |
[7] | GAO Tian, XIAO Qinglin, XU Chenyang, WANG Xuebin. Blowing Route to Fabricate Foams of 2D Materials [J]. Journal of Inorganic Materials, 2020, 35(12): 1315-1326. |
[8] | LIU Fengqi, FENG Jian, JIANG Yonggang, LI Liangjun. Preparation and Application of Boron Nitride Aerogels [J]. Journal of Inorganic Materials, 2020, 35(11): 1193-1202. |
[9] | ZHENG Qian, CAO Yuehan, HUANG Nanjian, DONG Fan, ZHOU Ying. BiOBr-BN Photocatalysts for Promoting Photocatalytic NO Oxidation and Inhibiting Toxic By-products [J]. Journal of Inorganic Materials, 2020, 35(11): 1255-1262. |
[10] | ZHU Meng-Meng, LI Guo-Hua, ZHANG Xue-Ming, ZHAI Jia-Xin, GAN Si-Ping, SONG Xiao. Boron Nitride Nanosheets Supported Cu2O Nanoparticles: Synthesis and Catalytic Reduction for 4-nitrophenol [J]. Journal of Inorganic Materials, 2019, 34(8): 817-826. |
[11] | Ren-Jie GENG, Song-Feng E, Chao-Wei LI, Tao-Tao LI, Jun WU, Ya-Gang YAO. High Crystallinity Boron Nitride Nanosheets: Preparation and the Property of BNNSs/Polyvinyl Alcohol Composite Film [J]. Journal of Inorganic Materials, 2019, 34(4): 401-406. |
[12] | WANG Meng-Qian, JIA Lin-Tao, LI Ai-Jun, PENG Yu-Qing, ZHANG Fang-Zhou. Preparation of Boron Nitride Coating from BCl3-NH3-H2-N2 Precursor by Chemical Vapor Deposition [J]. Journal of Inorganic Materials, 2018, 33(11): 1179-1185. |
[13] | WANG Hao, WANG Jin-Long, GOU Yan-Zi. Progress of Advanced Boron Carbide Ceramic Materials Prepared by Precursor Derived Method [J]. Journal of Inorganic Materials, 2017, 32(8): 785-791. |
[14] | SHI Rui-Rui, LI Meng, PEI Yuan-Sheng. Synthesis and Characterizations of B2O3-SiO2-Na2O Controlled-release Antibacterial Agent [J]. Journal of Inorganic Materials, 2017, 32(5): 529-534. |
[15] | QIAO Zhen-Jie, GAO Le, FENG Qian, HU Jian-Bao, DONG Shao-Ming, MA Liang-Lai. Boron Content on Microstructure and Mechanical Properties of Amorphous Boron Carbide by Chemical Vapor Deposition [J]. Journal of Inorganic Materials, 2017, 32(11): 1228-1232. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||