Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (11): 1167-1174.DOI: 10.15541/jim20180540
Previous Articles Next Articles
ZOU Ai-Hua,ZHOU Xian-Liang,KANG Zhi-Bing,RAO You-Hai,WU Kai-Yang
Received:
2018-11-12
Revised:
2019-03-08
Published:
2019-11-20
Online:
2019-05-29
Supported by:
CLC Number:
ZOU Ai-Hua, ZHOU Xian-Liang, KANG Zhi-Bing, RAO You-Hai, WU Kai-Yang. Alloy Elements on SiC/Al Interface: a First-principle and Experimental Study[J]. Journal of Inorganic Materials, 2019, 34(11): 1167-1174.
Size | Purity/wt% | Relative density/% | Roughness /nm |
---|---|---|---|
Φ20 mm×5 mm | >98.5 | >97 | 19 |
Table 1 Basic parameters of SiC substrate
Size | Purity/wt% | Relative density/% | Roughness /nm |
---|---|---|---|
Φ20 mm×5 mm | >98.5 | >97 | 19 |
Alsurf | (100) | (110) | (111) | (211) | SiCsurf | (001) | (011) | (111) | (211) |
---|---|---|---|---|---|---|---|---|---|
Esurf /(J·m-2) | 1.51 | 1.78 | 1.45 | 1.75 | Esurf/(J·m-2) | 5.42 | 5.96 | 6.49 | 8.41 |
Table 2 Surface energy of Al and 4H-SiC crystal
Alsurf | (100) | (110) | (111) | (211) | SiCsurf | (001) | (011) | (111) | (211) |
---|---|---|---|---|---|---|---|---|---|
Esurf /(J·m-2) | 1.51 | 1.78 | 1.45 | 1.75 | Esurf/(J·m-2) | 5.42 | 5.96 | 6.49 | 8.41 |
Model | Add number | Total energy/eV | Wad/(mJ·m-2) |
---|---|---|---|
Al/SiC | 0 | -6573.7404 | 851 |
Al-Mg/SiC | 1 | -7491.2968 | 1140 |
2 | -8408.7099 | 1342 | |
4 | -10243.2359 | 1015 | |
Al-Si/SiC | 1 | -6624.1431 | 1024 |
2 | -6674.512 | 1242 | |
4 | -6775.2566 | 936 | |
Al-Cu/SiC | 1 | -7993.8884 | 1088 |
2 | -9413.8768 | 1254 | |
4 | -12254.1254 | 642 |
Table 3 Adhesion work of SiC/Al interface before and after doping Mg, Si and Cu
Model | Add number | Total energy/eV | Wad/(mJ·m-2) |
---|---|---|---|
Al/SiC | 0 | -6573.7404 | 851 |
Al-Mg/SiC | 1 | -7491.2968 | 1140 |
2 | -8408.7099 | 1342 | |
4 | -10243.2359 | 1015 | |
Al-Si/SiC | 1 | -6624.1431 | 1024 |
2 | -6674.512 | 1242 | |
4 | -6775.2566 | 936 | |
Al-Cu/SiC | 1 | -7993.8884 | 1088 |
2 | -9413.8768 | 1254 | |
4 | -12254.1254 | 642 |
Atom number | Model | Charge population | |||
---|---|---|---|---|---|
s(Mg,Si,Cu) | p(Mg,Si,Cu) | d(Si, Cu) | Total(Mg, Si, Cu) | ||
Al(1) | Without Mg,Si,Cu | 1.11,1.11,1.11 | 1.76,1.76,1.76 | 0, 0 | 2.87, 2.87, 2.87 |
With Mg,Si,Cu | 1.15,1.14,1.14 | 1.84,1.74,1.75 | 0, 0 | 2.99, 2.88, 2.89 | |
Al(2)/(Mg,Si,Cu) | Without Mg,Si,Cu | 1.11,1.11,1.11 | 1.76,1.76,1.76 | 0, 0 | 2.87, 2.87, 2.87 |
With Mg,Si,Cu | 0.52,1.58,0.68 | 6.54, 2.5, 0.84 | 0, 9.76 | 7.07, 4.08, 9.76 | |
Al(4) | Without Mg,Si,Cu | 1.11,1.11,1.11 | 1.76,1.76,1.76 | 0, 0 | 2.87, 2.87, 2.87 |
With Mg,Si,Cu | 1.14,1.12,1.11 | 1.85,1.8,1.83 | 0, 0 | 2.99, 2.92, 2.94 | |
Si(2) | Without Mg,Si,Cu | 1.39,1.39,1.39 | 2.5, 2.5, 2.5 | 0, 0 | 3.98, 3.98, 3.98 |
With Mg,Si,Cu | 1.5,1.42,1.45 | 2.54, 2.56, 2.54 | 0, 0 | 4.04, 3.98, 3.99 | |
Si(4) | Without Mg,Si,Cu | 1.39,1.39,1.39 | 2.5, 2.5, 2.5 | 0, 0 | 3.89, 3.89, 3.89 |
With Mg,Si,Cu | 1.4,1.4,1.39 | 2.55, 2.5, 2.53 | 0, 0 | 3.95, 3.9, 3.92 |
Table 4 Millken charge of atom at SiC/Al interface before and after doping Mg, Si and Cu
Atom number | Model | Charge population | |||
---|---|---|---|---|---|
s(Mg,Si,Cu) | p(Mg,Si,Cu) | d(Si, Cu) | Total(Mg, Si, Cu) | ||
Al(1) | Without Mg,Si,Cu | 1.11,1.11,1.11 | 1.76,1.76,1.76 | 0, 0 | 2.87, 2.87, 2.87 |
With Mg,Si,Cu | 1.15,1.14,1.14 | 1.84,1.74,1.75 | 0, 0 | 2.99, 2.88, 2.89 | |
Al(2)/(Mg,Si,Cu) | Without Mg,Si,Cu | 1.11,1.11,1.11 | 1.76,1.76,1.76 | 0, 0 | 2.87, 2.87, 2.87 |
With Mg,Si,Cu | 0.52,1.58,0.68 | 6.54, 2.5, 0.84 | 0, 9.76 | 7.07, 4.08, 9.76 | |
Al(4) | Without Mg,Si,Cu | 1.11,1.11,1.11 | 1.76,1.76,1.76 | 0, 0 | 2.87, 2.87, 2.87 |
With Mg,Si,Cu | 1.14,1.12,1.11 | 1.85,1.8,1.83 | 0, 0 | 2.99, 2.92, 2.94 | |
Si(2) | Without Mg,Si,Cu | 1.39,1.39,1.39 | 2.5, 2.5, 2.5 | 0, 0 | 3.98, 3.98, 3.98 |
With Mg,Si,Cu | 1.5,1.42,1.45 | 2.54, 2.56, 2.54 | 0, 0 | 4.04, 3.98, 3.99 | |
Si(4) | Without Mg,Si,Cu | 1.39,1.39,1.39 | 2.5, 2.5, 2.5 | 0, 0 | 3.89, 3.89, 3.89 |
With Mg,Si,Cu | 1.4,1.4,1.39 | 2.55, 2.5, 2.53 | 0, 0 | 3.95, 3.9, 3.92 |
Bond type | Population | |||||
---|---|---|---|---|---|---|
Without Mg | With Mg | Without Si | With Si | Without Cu | With Cu | |
Al(1)-Si(1) | 0.36 | 0.4 | 0.36 | 0.37 | 0.36 | 0.38 |
Al(2)/(Mg,Si,Cu)-Si(2) | 0.36 | 0.35 | 0.36 | 0.28 | 0.36 | 0.31 |
Al(3)-Si(3) | 0.36 | 0.39 | 0.36 | 0.34 | 0.36 | 0.37 |
Al(4)-Si(4) | 0.36 | 0.4 | 0.36 | 0.36 | 0.36 | 0.37 |
Al(4)-Al(5) | 0.24 | 0.25 | 0.24 | 0.23 | 0.24 | 0.25 |
Si(4)-C(4) | 0.24 | 0.25 | 0.23 | 0.23 | 0.24 | 0.26 |
Table 5 Populations of atoms at and near SiC/Al interface before and after doping Mg, Si and Cu
Bond type | Population | |||||
---|---|---|---|---|---|---|
Without Mg | With Mg | Without Si | With Si | Without Cu | With Cu | |
Al(1)-Si(1) | 0.36 | 0.4 | 0.36 | 0.37 | 0.36 | 0.38 |
Al(2)/(Mg,Si,Cu)-Si(2) | 0.36 | 0.35 | 0.36 | 0.28 | 0.36 | 0.31 |
Al(3)-Si(3) | 0.36 | 0.39 | 0.36 | 0.34 | 0.36 | 0.37 |
Al(4)-Si(4) | 0.36 | 0.4 | 0.36 | 0.36 | 0.36 | 0.37 |
Al(4)-Al(5) | 0.24 | 0.25 | 0.24 | 0.23 | 0.24 | 0.25 |
Si(4)-C(4) | 0.24 | 0.25 | 0.23 | 0.23 | 0.24 | 0.26 |
Model | This experiment/ (mJ·m-2) | First principles/ (mJ·m-2) |
---|---|---|
SiC/Al | 839 | 851 |
SiC/Al-Mg | 1246 | 1140 |
SiC/Al-Si | 1167 | 1024 |
SiC/Al-Cu | 1220 | 1088 |
Table 6 Adhesion work of different interface systems
Model | This experiment/ (mJ·m-2) | First principles/ (mJ·m-2) |
---|---|---|
SiC/Al | 839 | 851 |
SiC/Al-Mg | 1246 | 1140 |
SiC/Al-Si | 1167 | 1024 |
SiC/Al-Cu | 1220 | 1088 |
[1] | SONG M, HE Y H . Effects of die-pressing pressure andextrusion on the microstructures and mechanical properties of SiC reinforced pure aluminium composites. Mater. Design, 2010,31(2):985-989. |
[2] | FOX R T, NEWMAN R A, PYZIK A J , et al. Al2O3-B4C-Al composite material system via pressure less infiltration methods. Int. J. Appl. Ceram. Technol., 2010,7(6):837-845. |
[3] | LEE H S, JEON K Y, KIM H Y , et al. Fabrication process and thermal properties of SiCp/Al metal matrix composites for electronic packaging applications. J. Mater. Sci., 2000,35(24):6231-6236. |
[4] | LI C Y, HU Y K, ZHENG X J , et al. Study of microstructure of SiCp/ZL101A composites by vacuum hot-pressing sintering processing. Rare Metal Mater. Eng., 2014,41(2):413-416. |
[5] | HE P, HUANG S Y, WANG H C , et al. Electroless nickel -phosphorus plating on silicon carbide particles for metal matrix composites. Ceram. Int., 2014,40(10):16653-16664. |
[6] | BHUSHAN R K, KUMAR S, DAS S . Optimisation of porosity of 7075 Al alloy 10% SiC composite produced by stir casting process through Taguchi method. Int. J. Mater. Eng. Innov., 2009,1(1):116-129. |
[7] | MANDALl D, VISWANATHAN S . Effect of re-melting on particles distribution and interface formation in SiC reinforced 2124Al matric composite. Mater. Charact., 2013,86:21-27. |
[8] | RATNAPARKHI P L, HOWE J M . Characterization of a diffusion- bonded Al-Mg alloy/SiC interface by high resolution and analytical electron microscopy. Metall. Mater. Trans. A, 1994,25(3):617-627. |
[9] | LUO Z P . Crystallography of SiC/MgAl2O4/Al interfaces in a pre-oxidizied SiC reinforced SiC/Al composite. Acta Mater., 2006,54(1):47-58. |
[10] | MANDALl D, VISWANATHAN S . Effect of heat treatment on microstructure and interface of SiC particle reinforced 2124 Al matrix composite. Mater. Charact., 2013,85:73-81. |
[11] | AGUILAR-MARTÍNEZ J A, PECH-CANUL M I, RODRÍGUEZ- REYES M , et al. Effect of Mg and SiC type on the processing of two-layer Al/SiCp composites by pressureless infiltration. J. Mater. Sci., 2004,39(3):1025-1028. |
[12] | EUSTATHOPOULOS N, LAURENT V, RADO C . Wetting kinetics and bonding of Al and Al alloys on α-SiC. Mater. Sci. Eng. A, 1996,205(1/2):1-8. |
[13] | KOBASHI M, CHOH T . The wettability and the reaction for SiC particlce/Al alloy system. J. Mater. Sci., 1993,28(3):684-690. |
[14] | FERRO A C, DERBY B . Wetting behavior in the Al-Si/SiC system: interface reactions and solubility effects. Acta Mater., 1995,43(8):3061-3073. |
[15] | MA X C, WU J B . An investigation on wettability and interfacial phenomena of Al-SiC system. J. Mater. Sci. Eng., 1994,12(1):37-41. |
[16] | ZHANG Q, JIA L T, WU G H . Fabrication of oxidized SiC particles reinforced aluminum matrix composite by pressureless infiltration technique. J. Inorg. Mater., 2012,27(4):353-357. |
[17] | LIU J Y, LIU Y C, LIU G Q , et al. Oxidation behavior of silicon carbide particales and their interfacial characterization in aluminum matrix composites. Chin. J. Nonferrous Met., 2002,12(5):961-966. |
[18] | ZHANG D, SHEN P, SHI L X . Wetting and evaporation behaviors of molten Mg on partially oxidized SiC substrates. Appl. Surf. Sci., 2010,256(23):7043-7047. |
[19] | JONES R O, GUNNARSSON O . Density-functional formalism: sources of error in local-density applications. Phys. Rev. Lett., 1989,61(3):689-746. |
[20] | HONG T, SIMTH J R, SROLOVITZ D J . Theory of meta-ceramic adhesion. Acta Metall. Mater., 1995,43(7):2721-2730. |
[21] | HAYES R L, ORTIZ M, CARTER E A . Universal binding-energy relation for crystals that accounts for surface relaxation. Phys. Rev. B, 2004,69(17):1324-1332. |
[22] | SHI L X, SHEN P, ZHANG D, JIANG Q C . Wetting and evaporation behaviors of molten Mg-Al alloy drops on partially oxidized α-SiC substrates. Mater Z. Chem. Phys., 2011,130(3):1125-1133. |
[23] | SAIZ E, CANNON R M, TOMSIA A P . Reactive spreading in ceramic/metal systems. Oil Gas Sci. Technol., 2001,56(1):89-96. |
[24] | HOEKSTRA J, KOHYAMA M . Ab initio calculations of the β-SiC(001)/Al interface. Phys. Rev. B, 1998,57(4):2334-2341. |
[25] | WINKLER B, PICKARD C J, SEGALL M D , et al. Density- functional study of charge disordering in Cs2Au(I)Au(Ⅲ)Cl6 under pressure. Phys. Rev. B, 2001,63(21):214103-214106. |
[26] | LIU Y M, SHI J Y, LU Q Q , et al. Research progress of solid surface energy calculation based on Young's equation. Mater. Rev., 2013,23(11):123-129. |
[27] | CANDAN E, ATKINSON H V, TUREN Y , et al. Wettability of aluminum-magnesium alloys on silicon carbide substrates. J. Am. Ceram. Soc., 2011,94(3):867-874. |
[1] | CHEN Mengjie, WANG Qianqian, WU Chengtie, HUANG Jian. Predicting the Degradability of Bioceramics through a DFT-based Descriptor [J]. Journal of Inorganic Materials, 2024, 39(10): 1175-1181. |
[2] | YANG Yingkang, SHAO Yiqing, LI Bailiang, LÜ Zhiwei, WANG Lulu, WANG Liangjun, CAO Xun, WU Yuning, HUANG Rong, YANG Chang. Enhanced Band-edge Luminescence of CuI Thin Film by Cl-doping [J]. Journal of Inorganic Materials, 2023, 38(6): 687-692. |
[3] | ZHANG Shouchao, CHEN Hongyu, LIU Hongfei, YANG Yu, LI Xin, LIU Defeng. High Temperature Recovery of Neutron Irradiation-induced Swelling and Optical Property of 6H-SiC [J]. Journal of Inorganic Materials, 2023, 38(6): 678-686. |
[4] | HUA Siheng, YANG Dongwang, TANG Hao, YUAN Xiong, ZHAN Ruoyu, XU Zhuoming, LYU Jianan, XIAO Yani, YAN Yonggao, TANG Xinfeng. Effect of Surface Treatment of n-type Bi2Te3-based Materials on the Properties of Thermoelectric Units [J]. Journal of Inorganic Materials, 2023, 38(2): 163-169. |
[5] | SUN Ming, SHAO Puzhen, SUN Kai, HUANG Jianhua, ZHANG Qiang, XIU Ziyang, XIAO Haiying, WU Gaohui. First-principles Study on Interface of Reduced Graphene Oxide Reinforced Aluminum Matrix Composites [J]. Journal of Inorganic Materials, 2022, 37(6): 651-659. |
[6] | FENG Qingying, LIU Dong, ZHANG Ying, FENG Hao, LI Qiang. Thermodynamic and First-principles Assessments of Materials for Solar-driven CO2 Splitting Using Two-step Thermochemical Cycles [J]. Journal of Inorganic Materials, 2022, 37(2): 223-229. |
[7] | ZHANG Xiaojun, LI Jiale, QIU Wujie, YANG Miaosen, LIU Jianjun. Electrochemical Activity of Positive Electrode Material of P2-Nax[Mg0.33Mn0.67]O2 Sodium Ion Battery [J]. Journal of Inorganic Materials, 2021, 36(6): 623-628. |
[8] | ZHAO Yupeng,HE Yong,ZHANG Min,SHI Junjie. First-principles Study on the Photocatalytic Hydrogen Production of a Novel Two-dimensional Zr2CO2/InS Heterostructure [J]. Journal of Inorganic Materials, 2020, 35(9): 993-998. |
[9] | LI Jin, LIU Ting-Yu, YAO Shu-An, FU Ming-Xue, LU Xiao-Xiao. First Principles Study on the Property of O Vacancy in LuPO4 Crystal [J]. Journal of Inorganic Materials, 2019, 34(8): 879-884. |
[10] | LI Xin, XI Li-Li, YANG Jiong. First Principles High-throughput Research on Thermoelectric Materials: a Review [J]. Journal of Inorganic Materials, 2019, 34(3): 236-246. |
[11] | WANG Zhong, ZHA Xian-Hu, WU Ze, HUANG Qing, DU Shi-Yu. First-principles Study on Electronic and Magnetic Properties of Mn-doped Strontium Ferrite SrFe12O19 [J]. Journal of Inorganic Materials, 2019, 34(10): 1047-1054. |
[12] | CHANG Xi-Wang, CHEN Ning, WANG Li-Jun, LI Fu-Shen, BIAN Liu-Zhen, CHOU Kuo-Chih. Optimal Principle on Composition of B Site Elements in Perovskite Electrodes with Sr at A Site for Solid Oxide Fuel Cell [J]. Journal of Inorganic Materials, 2017, 32(10): 1055-1062. |
[13] | CHANG Xi-Wang, CHEN Ning, WANG Li-Jun, BIAN Liu-Zhen, LI Fu-Shen, CHOU Kuo-Chih. Optimization Rule of Anode Materials for Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2015, 30(10): 1043-1048. |
[14] | QIU Rui-Hao, LI Yong-Xiang, ZHANG Wen-Qing. Phase Competition in Bismuth Layered Structure Based on First Principles Thermodynamics [J]. Journal of Inorganic Materials, 2014, 29(11): 1156-1160. |
[15] | YING Yan-Jun, CHENG Li-Fang, ZENG Xiao-Qin, ZOU Jian-Xin, DING Wen-Jiang. Theoretical and Experimental Investigations of the Effect of Co Addition on the Structural and Properties of AB3.5-type Hydrogen Storage Alloys [J]. Journal of Inorganic Materials, 2012, 27(6): 568-574. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||