Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (10): 1042-1048.DOI: 10.15541/jim20160698
• Orginal Article • Previous Articles Next Articles
LIU Yong-Qiang1,2, HUANG Hao1,2, ZHAI Jin-Sheng1,2, MA Meng-Jun1,2, FAN Jia-Jie1,2
Received:
2016-12-23
Revised:
2017-02-16
Published:
2017-10-20
Online:
2017-09-21
About author:
LIU Yong-Qiang. E-mail: 1015221794@qq.com
Supported by:
CLC Number:
LIU Yong-Qiang, HUANG Hao, ZHAI Jin-Sheng, MA Meng-Jun, FAN Jia-Jie. Graphene Quantum Dots/CdS/CdSe Co-Sensitized Solar Cells[J]. Journal of Inorganic Materials, 2017, 32(10): 1042-1048.
Samples | η /% | VOC /V | FF | JSC /(mA·cm-2) |
---|---|---|---|---|
TiO2/CdS(2)/CdSe | 0.39 | 0.283 | 0.347 | 4.00 |
TiO2/CdS(4)/CdSe | 0.59 | 0.297 | 0.320 | 6.22 |
TiO2/CdS(6)/CdSe | 0.62 | 0.341 | 0.371 | 4.90 |
TiO2/QGDs/CdS(2)/CdSe | 0.61 | 0.316 | 0.342 | 5.62 |
TiO2/QGDs/CdS(4)/CdSe | 1.24 | 0.374 | 0.342 | 9.47 |
TiO2/QGDs/CdS(6)/CdSe | 1.05 | 0.395 | 0.324 | 8.23 |
Table 1 Comparison of the I-V characteristics of QDSSCs made from TiO2 photoanodes sensitized by various QDs
Samples | η /% | VOC /V | FF | JSC /(mA·cm-2) |
---|---|---|---|---|
TiO2/CdS(2)/CdSe | 0.39 | 0.283 | 0.347 | 4.00 |
TiO2/CdS(4)/CdSe | 0.59 | 0.297 | 0.320 | 6.22 |
TiO2/CdS(6)/CdSe | 0.62 | 0.341 | 0.371 | 4.90 |
TiO2/QGDs/CdS(2)/CdSe | 0.61 | 0.316 | 0.342 | 5.62 |
TiO2/QGDs/CdS(4)/CdSe | 1.24 | 0.374 | 0.342 | 9.47 |
TiO2/QGDs/CdS(6)/CdSe | 1.05 | 0.395 | 0.324 | 8.23 |
[1] | LEE Y L, LO Y S.Highly efficiency quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe.Advances Materials, 2009, 19(4): 604-609. |
[2] | LUO S P, SHEN H, HU W, et al.Improved charge separation and transport efficiency in panchromatic-sensitized solar cells with co-sensitization of PbS/CdS/ZnS quantum dots and dye molecules.RSC Advances, 2016, 6(25): 21156-21164. |
[3] | PAN Z X, ZHANG H, CHENG K, et al.Highly efficient inverted type-I CdS/CdSe core/shell structure QD-sensitized solar cells. ACS nano, 2012, 6(5): 3982-3991. |
[4] | YU J G, FAN J J, LV K L.Anatase TiO2 nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells.Nanoscale, 2010, 2(10): 2144-2149. |
[5] | ZHAO L, YU J G, FAN J J.Dye-sensitized solar cells based on ordered titanate nanorod films fabricated by electrophoretic deposition method.Electrochemistry Communications, 2009, 11(10): 2052-2055. |
[6] | YU J G, FAN J J, CHENG B.Dye-sensitized solar cells based on anatase TiO2 hollow spheres/carbon nanorod composite films.Journal of Power Sources, 2011, 196(18): 7891-7898. |
[7] | DING Y, Ma Y M, TAO L, et al.TiO2 nanocrystalline layer as a bridge linking TiO2 sub-microspheres layer and substrates for high-efficiency dye-sensitized solar cells.Journal of Power Sources, 2014, 272(7): 1046-1052. |
[8] | SOMMELIGN P M, O'REGAN B C, HASWELL R R, et al. Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells.Journal of Physical Chemistry B, 2006, 110(39): 19191-19197. |
[9] | CHENG P F, DU S S, CAI Y X, et al.Tripartite layered photoanode from hierarchical anatase TiO2 urchin-like spheres and P25: a candidate for enhanced efficiency dye sensitized solar cells.Journal of Physical Chemistry C, 2013, 117(46): 24150-24156. |
[10] | YU J G, FAN J J, ZHAO L.Dye-sensitized solar cells based on hollow anatase TiO2 spheres prepared by self-transformation method.Electrochimica Acta, 2010, 55(3): 597-602. |
[11] | FAN J J, LIU S W, YU J G.Enhanced photovoltaic performance of dye-sensitized solar cells based on TiO2 nanosheets/graphene composite films.Journal of Materials Chemistry, 2012, 22(33): 17027-17036. |
[12] | ZHU G, PAN L K, XU T, et al.CdS/CdSe-cosensitized TiO2 photoanode for quantum-dot-sensitized solar cells by a microwave-assisted chemical bath deposition method.ACS Applied Materials, 2011, 3(8): 3146-3151. |
[13] | ZHAO L, FAN J J, LI J, et al.Preparation and photoelectric properties of ZnO/TiO2 nanotubes film electrodes.Journal of Inorganic Materials, 2012, 27(6): 585-590. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | YANG Mingkai, HUANG Zeai, ZHOU Yunxiao, LIU Tong, ZHANG Kuikui, TAN Hao, LIU Mengying, ZHAN Junjie, CHEN Guoxing, ZHOU Ying. Co-production of Few-layer Graphene and Hydrogen from Methane Pyrolysis Based on Cu and Metal Oxide-KCl Molten Medium [J]. Journal of Inorganic Materials, 2025, 40(5): 473-480. |
[3] | FAN Xiaoxuan, ZHENG Yonggui, XU Lirong, YAO Zimin, CAO Shuo, WANG Kexin, WANG Jiwei. Organic Pollutant Fenton Degradation Driven by Self-activated Afterglow from Oxygen-vacancy-rich LiYScGeO4: Bi3+ Long Afterglow Phosphor [J]. Journal of Inorganic Materials, 2025, 40(5): 481-488. |
[4] | LIAN Minli, SU Jiaxin, HUANG Hongyang, JI Yuyin, DENG Haifan, ZHANG Tong, CHEN Chongqi, LI Dalin. Supported Ni Catalysts from Ni-Mg-Al Hydrotalcite-like Compounds:Preparation and Catalytic Performance for Ammonia Decomposition [J]. Journal of Inorganic Materials, 2025, 40(1): 53-60. |
[5] | LI Jiaqi, LI Xiaosong, LI Xuanhe, ZHU Xiaobing, ZHU Aimin. Transition Metal-doped Manganese Oxide: Synthesis by Warm Plasma and Electrocatalytic Performance for Oxygen Evolution Reaction [J]. Journal of Inorganic Materials, 2024, 39(7): 835-844. |
[6] | YANG Bo, LÜ Gongxuan, MA Jiantai. Electrocatalytic Water Splitting over Nickel Iron Hydroxide-cobalt Phosphide Composite Electrode [J]. Journal of Inorganic Materials, 2024, 39(4): 374-382. |
[7] | YE Maosen, WANG Yao, XU Bing, WANG Kangkang, ZHANG Shengnan, FENG Jianqing. II/Z-type Bi2MoO6/Ag2O/Bi2O3 Heterojunction for Photocatalytic Degradation of Tetracycline under Visible Light Irradiation [J]. Journal of Inorganic Materials, 2024, 39(3): 321-329. |
[8] | SUN Chen, ZHAO Kunfeng, YI Zhiguo. Research Progress in Catalytic Total Oxidation of Methane [J]. Journal of Inorganic Materials, 2023, 38(11): 1245-1256. |
[9] | LI Yuejun, CAO Tieping, SUN Dawei. Bi4O5Br2/CeO2 Composite with S-scheme Heterojunction: Construction and CO2 Reduction Performance [J]. Journal of Inorganic Materials, 2023, 38(8): 963-970. |
[10] | WANG Mengtao, SUO Jun, FANG Dong, YI Jianhong, LIU Yichun, Olim RUZIMURADOV. Visible-light Catalytic Performance of ITO/TiO2 Nanotube Array Composite [J]. Journal of Inorganic Materials, 2023, 38(11): 1292-1300. |
[11] | MA Xinquan, LI Xibao, CHEN Zhi, FENG Zhijun, HUANG Juntong. BiOBr/ZnMoO4 Step-scheme Heterojunction: Construction and Photocatalytic Degradation Properties [J]. Journal of Inorganic Materials, 2023, 38(1): 62-70. |
[12] | TUERHONG Munire, ZHAO Honggang, MA Yuhua, QI Xianhui, LI Yuchen, YAN Chenxiang, LI Jiawen, CHEN Ping. Construction and Photocatalytic Activity of Monoclinic Tungsten Oxide/Red Phosphorus Step-scheme Heterojunction [J]. Journal of Inorganic Materials, 2023, 38(6): 701-707. |
[13] | GAN Hongyu, FENG Yan, YANG Dehong, TIAN Yubin, LI Yang, XING Tao, LI Zhi, ZHAO Xuebo, DAI Pengcheng. Heteroatom-doped Biochar for Direct Dehydrogenation of Propane to Propylene [J]. Journal of Inorganic Materials, 2022, 37(10): 1058-1064. |
[14] | LIU Xuechen, ZENG Di, ZHOU Yuanyi, WANG Haipeng, ZHANG Ling, WANG Wenzhong. Selective Oxidation of Biomass over Modified Carbon Nitride Photocatalysts [J]. Journal of Inorganic Materials, 2022, 37(1): 38-44. |
[15] | CHEN Xiaomei, CHEN Ying, YUAN Xia. Decomposition of Cyclohexyl Hydroperoxide Catalyzed by Core-shell Material Co3O4@SiO2 [J]. Journal of Inorganic Materials, 2022, 37(1): 65-71. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||