Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (4): 365-371.DOI: 10.15541/jim20160377
• Orginal Article • Previous Articles Next Articles
YU Yang1, TONG Ming-Xing1, HE Yu-Lan1, CHEN Hui1, GAO Jing1, 2, LI Guo-Hua1, 2
Received:
2016-06-15
Revised:
2016-09-12
Published:
2017-04-20
Online:
2017-03-24
About author:
YU Yang. E-mail: 2111401151@zjut.edu.cn
Supported by:
CLC Number:
YU Yang, TONG Ming-Xing, HE Yu-Lan, CHEN Hui, GAO Jing, LI Guo-Hua. Preparation and Visible-light Photocatalytic Performance of Mesoporous Hollow TiO2/WO3 Spheres[J]. Journal of Inorganic Materials, 2017, 32(4): 365-371.
Temperature/℃ | Size/nm |
---|---|
500 | 9.8 |
600 | 21.5 |
700 | 48.3 |
Table 1 Relationship between calcination temperature and grain size of anatase
Temperature/℃ | Size/nm |
---|---|
500 | 9.8 |
600 | 21.5 |
700 | 48.3 |
Fig. 4 TEM images of TiO2/WO3 composite calcined at 500℃with 3mol% WO3(a, b) TEM images of TiO2/WO3 composites ; (c, d) HRTEM images of TiO2/WO3 composites
[1] | HOFFMANN M R, MARTIN S T, CHOI W Y, et al.Environmental applications of semiconductor photocatalysis. Chemical Reviews, 1995, 95(1): 69-96. |
[2] | DAGHRIR R, DROGUI P, ROBERT D.Modified TiO2 for environmental photocatalytic applications: a review. Ind. Eng. Chem. Res., 2013, 52(10): 3581-3599. |
[3] | ASILTURK M, SAYILKAN F, ARPAC E.Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of malachite green dye under UV and vis-irradiation. J. Photoch. Photobio. A, 2009, 203(1): 64-71. |
[4] | TONG H, OUYANG S X, BI Y P, et al.Nano-photocatalytic materials: possibilities and challenges. Adv. Mater., 2012, 24(2): 229-251. |
[5] | MENG F K, HONG Z L, ARNDT J, et al.Visible light photocatalytic activity of nitrogen-doped La2Ti2O7 nanosheets originating from band gap narrowing. Nano Res., 2012, 5(3): 213-221. |
[6] | RIBONI F, BETTINI L G, BAHNEMANN D W, et al.WO3-TiO2 vs. TiO2 photocatalysts: effect of the W precursor and amount on the photocatalytic activity of mixed oxides. Catal. Today, 2013, 209: 28-34. |
[7] | PUDDU V, MOKAYA R, PUMA G L.Novel one step hydrothermal synthesis of TiO2/WO3 nanocomposites with enhanced photocatalytic activity. Chemical Communicaltions, 2007, 45: 4749-4751. |
[8] | QU X F, LIU L Y, LI X Q, et al.Preparation of TiO2: Er3+ hollow spheres and its photocatalytic properties. Journal of Inorganic Materials, 2005, 30(2): 183-188. |
[9] | TIAN J T, CHEN L J, YIN Y S, et al.Photocatalyst of TiO2/ZnO nano composite film: preparation, characterization, and photodegradation activity of methyl orange. Surf. Coat. Technol., 2009, 204(1/2): 205-214. |
[10] | CHUNG K S, JIANG Z D, GILL B S, et al.Oxidative decomposition of o-dichlorobenzene over V2O5/TiO2 catalyst washcoated onto wire-mesh honeycombs. Appl. Catal. A, 2002, 237(1/2): 81-89. |
[11] | KITIYANAN A, SAKULKHAEMARUETHAI S, SUZUKI Y, et al.Structural and photovoltaic properties of binary TiO2-ZrO2 oxides system prepared by Sol-Gel method. Compos. Sci. Technol., 2006, 66(10): 1259-1265. |
[12] | KAMBUR A, POZAN G S, BOZ I.Preparation, characterization and photocatalytic activity of TiO2-ZrO2 binary oxide nanoparticles.Appl. Catal. B -Environ., 2012, 115: 149-158. |
[13] | TRISTAO J C, MAGALHAES F, CORIO P, et al.Electronic characterization and photocatalytic properties of CdS/TiO2 semiconductor composite. J. Photochem. Photobiol. A, 2006, 181(2/3): 152-157. |
[14] | LI X, CHEN X, NIU H, et al.The synthesis of CdS/TiO2 hetero-nanofibers with enhanced visible photocatalytic activity. J. Colloid. Interf. Sci., 2015, 452: 89-97. |
[15] | LI F B, GU G B, LI X J, et al.The preparation and photocatalytic performance of TiO2/WO3 nanomaterials. Acta Physico-Chimica Sinica, 2000, 16(11): 997-1002. |
[16] | ILIEV V, TOMAVA D, RAKOVSKY S, et al.Enhancement of photocatalytic oxidation of oxalic acid by gold modified WO3/TiO2 photocatalysts under UV and visible light irradiation. J. Mol. Catal. A: Chem., 2010, 327(1/2): 51-57. |
[17] | CAI J B, WU X Q, LI S X, et al.Synthesis of TiO2@WO3/Au nanocomposite hollow spheres with controllable size and high visible-light-driven photocatalytic activity. ACS Sustain. Chem. Eng., 2016, 4(3): 1581-1590. |
[18] | KELLER V, BERNHARDT P, GARIN F.Photocatalytic oxidation of butyl acetate in vapor phase on TiO2, Pt/TiO2 and WO3/TiO2 catalysts. Journal of Catalysis, 2003, 215(1): 129-138. |
[19] | LIU J X, DONG X L, LIU X W, et al.Solvothermal synthesis and characterization of tungsten oxides with controllable morphology and crystal phase. J. Alloys Compd., 2011, 509(5): 1482-1488. |
[20] | LIU Y, XIE C S, LI J, et al.New insights into the relationship between photocatalytic activity and photocurrent of TiO2/WO3 nanocomposite. Appl. Catal. A, 2012, 433: 81-87. |
[21] | KOBAYASHI M, MIYOSHI K.WO3-TiO2 monolithic catalysts for high temperature SCR of NO by NH3: Influence of preparation method on structural and physico-chemical properties, activity and durability. Appl. Catal. B, 2007, 72(3/4): 253-261. |
[22] | ULGEN A, HOELDERICH W F.Conversion of glycerol to acrolein in the presence of WO3/TiO2 catalysts. Appl. Catal. A, 2011, 400(1/2): 34-38. |
[23] | LIU S S, HUANG J F, CAO L Y, et al.One-pot synthesis of TiO2-WO3 composite nanocrystallites with improved photocatalytic properties under natural sunlight irradiation. Mat. Sci. Semicon. Proc., 2014, 25: 106-111. |
[24] | LV K Z, LI J, QING X X, et al.Synthesis and photo-degradation application of WO3/TiO2 hollow spheres. J. Hazard. Mater., 2011, 189(1/2): 329-335. |
[25] | RAMOS-DELGADO N A, HINOJOSA-REYES L, GUZMAN- MAR I L, et al. Synthesis by Sol-Gel of WO3/TiO2 for solar photocatalytic degradation of malathion pesticide. Catal. Today, 2013, 209: 35-40. |
[26] | VUONG N M, KIM D, KIM H.Electrochromic properties of porous WO3-TiO2 core-shell nanowires. J. Mater. Chem. C, 2013, 1(21): 3399-3407. |
[27] | SMITH W, WOLCOTT A, FITZMORRIS R C, et al.Quasi- core-shell TiO2/WO3 and WO3/TiO2 nanorod arrays fabricated by glancing angle deposition for solar water splitting. J. Mater. Chem., 2011, 21(29): 10792-10800. |
[28] | NAH Y C, SHRESTHA N K, KIM D, et al.Electrochemical growth of self-organized TiO2-WO3 composite nanotube layers: effects of applied voltage and time. J. Appl. Electrochem., 2013, 43(1): 9-13. |
[29] | KE D N, LIU H J, PENG T Y, et al.Preparation and photocatalytic activity of WO3/TiO2 nanocomposite particles. Materials Letters 2008, 62(3): 447-450. |
[30] | AKURATI K K, VITAL A, DELLEMANN J P, et al.Flame-made WO3/TiO2 nanoparticles: Relation between surface acidity, structure and photocatalytic activity.Appl. Catal. B -Environ., 2008, 79(1/2): 53-62. |
[31] | JOSELEVICH E, WILLNER I.Photosensitization of quantum-size TiO2 particles in water-in-oil microemulsions. J. Phys. Chem., 1994, 98(31): 7628-7635. |
[1] | YE Maosen, WANG Yao, XU Bing, WANG Kangkang, ZHANG Shengnan, FENG Jianqing. II/Z-type Bi2MoO6/Ag2O/Bi2O3 Heterojunction for Photocatalytic Degradation of Tetracycline under Visible Light Irradiation [J]. Journal of Inorganic Materials, 2024, 39(3): 321-329. |
[2] | CAI Mengyu, LI-YANG Hongmiao, YANG Caiyun, ZHOU Yuting, WU Hao. Activated Sludge Incineration Ash Derived Fenton-like Catalyst: Preparation and Degradation Performance on Methylene Blue [J]. Journal of Inorganic Materials, 2024, 39(10): 1135-1142. |
[3] | LI Qiushi, YIN Guangming, LÜ Weichao, WANG Huaiyao, LI Jinglin, YANG Hongguang, GUAN Fangfang. Preparation of Na+/g-C3N4 Materials and Their Photocatalytic Degradation Mechanism on Methylene Blue [J]. Journal of Inorganic Materials, 2024, 39(10): 1143-1150. |
[4] | LI Yuejun, CAO Tieping, SUN Dawei. Bi4O5Br2/CeO2 Composite with S-scheme Heterojunction: Construction and CO2 Reduction Performance [J]. Journal of Inorganic Materials, 2023, 38(8): 963-970. |
[5] | TUERHONG Munire, ZHAO Honggang, MA Yuhua, QI Xianhui, LI Yuchen, YAN Chenxiang, LI Jiawen, CHEN Ping. Construction and Photocatalytic Activity of Monoclinic Tungsten Oxide/Red Phosphorus Step-scheme Heterojunction [J]. Journal of Inorganic Materials, 2023, 38(6): 701-707. |
[6] | WANG Mengtao, SUO Jun, FANG Dong, YI Jianhong, LIU Yichun, Olim RUZIMURADOV. Visible-light Catalytic Performance of ITO/TiO2 Nanotube Array Composite [J]. Journal of Inorganic Materials, 2023, 38(11): 1292-1300. |
[7] | JIA Xin, LI Jinyu, DING Shihao, SHEN Qianqian, JIA Husheng, XUE Jinbo. Synergy Effect of Pd Nanoparticles and Oxygen Vacancies for Enhancing TiO2 Photocatalytic CO2 Reduction [J]. Journal of Inorganic Materials, 2023, 38(11): 1301-1308. |
[8] | MA Rundong, GUO Xiong, SHI Kaixuan, AN Shengli, WANG Ruifen, GUO Ruihua. S-type Heterojunction of MOS2/g-C3N4: Construction and Photocatalysis [J]. Journal of Inorganic Materials, 2023, 38(10): 1176-1182. |
[9] | HONG Jiahui, MA Ran, WU Yunchao, WEN Tao, AI Yuejie. CoNx/g-C3N4 Nanomaterials Preparation by MOFs Self-sacrificing Template Method for Efficient Photocatalytic Reduction of U(VI) [J]. Journal of Inorganic Materials, 2022, 37(7): 741-749. |
[10] | CHI Congcong, QU Panpan, REN Chaonan, XU Xin, BAI Feifei, ZHANG Danjie. Preparation of SiO2@Ag@SiO2@TiO2 Core-shell Structure and Its Photocatalytic Degradation Property [J]. Journal of Inorganic Materials, 2022, 37(7): 750-756. |
[11] | AN Lin, WU Hao, HAN Xin, LI Yaogang, WANG Hongzhi, ZHANG Qinghong. Non-precious Metals Co5.47N/Nitrogen-doped rGO Co-catalyst Enhanced Photocatalytic Hydrogen Evolution Performance of TiO2 [J]. Journal of Inorganic Materials, 2022, 37(5): 534-540. |
[12] | MA Hui, TAO Jianghui, WANG Yanni, HAN Yu, WANG Yabin, DING Xiuping. Gold Nanoparticles Supported on Silica & Titania Hybrid Mesoporous Spheres and Their Catalytic Performance Regulation [J]. Journal of Inorganic Materials, 2022, 37(4): 404-412. |
[13] | CHEN Shikun, WANG Chuchu, CHEN Ye, LI Li, PAN Lu, WEN Guilin. Magnetic Ag2S/Ag/CoFe1.95Sm0.05O4 Z-scheme Heterojunction: Preparation and Its Photocatalytic Degradation Property [J]. Journal of Inorganic Materials, 2022, 37(12): 1329-1336. |
[14] | GAO Wa, XIONG Yujie, WU Congping, ZHOU Yong, ZOU Zhigang. Recent Progress on Photocatalytic CO2 Reduction with Ultrathin Nanostructures [J]. Journal of Inorganic Materials, 2022, 37(1): 3-14. |
[15] | ZHOU Fan, BI Hui, HUANG Fuqiang. Ultra-large Specific Surface Area Activated Carbon Synthesized from Rice Husk with High Adsorption Capacity for Methylene Blue [J]. Journal of Inorganic Materials, 2021, 36(8): 893-903. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||