Journal of Inorganic Materials ›› 2014, Vol. 29 ›› Issue (9): 979-984.DOI: 10.15541/jim20130666
• Orginal Article • Previous Articles Next Articles
XIE Xiao-Ling1,2, CAO Qing1, GUO Liang-Chen1, ZHONG Cun-Gui1
Received:
2013-12-17
Revised:
2014-01-29
Published:
2014-09-17
Online:
2014-08-21
About author:
XIE Xiao-Ling. E-mail: xiexl2003@126.com
CLC Number:
XIE Xiao-Ling, CAO Qing, GUO Liang-Chen, ZHONG Cun-Gui. Preparation and Electrochemical Properties of Ordered Needle Coke with Graphene as an Inoculating Seed[J]. Journal of Inorganic Materials, 2014, 29(9): 979-984.
Sample | Elemental analyses/wt% | H/C | QI (I) | ||||
---|---|---|---|---|---|---|---|
C | H | O | N | S | |||
CTP | 93.00 | 4.53 | 0.73 | 0.94 | 0.83 | 0.58 | 5.12 |
FCTP | 73.61 | 5.63 | 19.83 | 0.80 | 0.13 | 1.12 | 0.01 |
Table 1 Elemental analyses of coal tar pitch (CTP) and refined coal tar pitch (FCTP)
Sample | Elemental analyses/wt% | H/C | QI (I) | ||||
---|---|---|---|---|---|---|---|
C | H | O | N | S | |||
CTP | 93.00 | 4.53 | 0.73 | 0.94 | 0.83 | 0.58 | 5.12 |
FCTP | 73.61 | 5.63 | 19.83 | 0.80 | 0.13 | 1.12 | 0.01 |
Thickness/nm | Diameter/nm | Layers | Density/(g•m-3) | Specific area/ (m2•g-1) | C / wt% | O / wt% |
---|---|---|---|---|---|---|
0.34-3.4 | 30-50 | <10 | 0.07 | 178 | 97 | 3 |
Table 2 Main characteristics of graphene
Thickness/nm | Diameter/nm | Layers | Density/(g•m-3) | Specific area/ (m2•g-1) | C / wt% | O / wt% |
---|---|---|---|---|---|---|
0.34-3.4 | 30-50 | <10 | 0.07 | 178 | 97 | 3 |
Fig. 3 Polarized micrographs of the semi-coke with different contents of graphene (a) Without GE; (b) 0.1wt% GE; (c) 0.15wt%zw GE; (d) 0.2wt% GE; (e) 0.3wt% GE
Fig. 4 XRD patterns of the needle cokes with different contents of graphene (a) Without GE; (b) 0.1wt% GE; (c) 0.15wt% GE; (d) 0.2wt% GE; (e) 0.3wt% GE
Graphene/wt% | 2θ/(°) | d002/nm | Β/nm | Lc/nm | G/ % |
---|---|---|---|---|---|
0 | 25.606 | 3.476 | 0.518 | 0.287 | / |
0.10 | 26.109 | 3.4102 | 0.513 | 0.319 | 34.65 |
0.15 | 26.195 | 3.399 | 0.487 | 0.345 | 47.67 |
0.20 | 27.269 | 3.2676 | 0.287 | 1.073 | 200.46 |
0.30 | 26.943 | 3.3065 | 0.477 | 0.491 | 155.23 |
Table 3 Structural parameters of needle cokes
Graphene/wt% | 2θ/(°) | d002/nm | Β/nm | Lc/nm | G/ % |
---|---|---|---|---|---|
0 | 25.606 | 3.476 | 0.518 | 0.287 | / |
0.10 | 26.109 | 3.4102 | 0.513 | 0.319 | 34.65 |
0.15 | 26.195 | 3.399 | 0.487 | 0.345 | 47.67 |
0.20 | 27.269 | 3.2676 | 0.287 | 1.073 | 200.46 |
0.30 | 26.943 | 3.3065 | 0.477 | 0.491 | 155.23 |
Fig. 5 SEM images of the needle coke obtained from FCTP with different contents of graphene (a) Without GE; (b) 0.1wt% GE; (c) 0.15wt% GE; (d) 0.2wt% GE; (e) 0.3wt% GE
Fig. 6 Cyclic voltammograms of the needle coke with different contents of graphene (a) Without GE; (b) 0.1wt% GE; (c) 0.15wt% GE; (d) 0.2wt% GE; (e) 0.3wt% GE
[1] | KAWANO Y, FUKUDA T, KAWARADA T, et al. Suppression of puffing during the graphitization of pitch needle coke by boric acid. Carbon, 1999, 37(4): 555-560. |
[2] | PRADA V, GRANDA M, BERMEJO J, et al. Preparation of novel pitches by tar air-blowing. Carbon, 1999, 37(1): 97-106. |
[3] | PARK C W, YOON S H, OH S M. An EVS (electrochemical voltage spectroscopy) study for the comparison of graphitization behaviors of two petroleum needle cokes. Carbon, 2000, 38(9): 1261-1269. |
[4] | LU C L, XU S P, GAN Y X. Effect of pre-carbonization of petroleum cokes on chemical activation process with KOH. Carbon, 2005, 43(11): 2295-2301. |
[5] | YANG Y J, LIN Q L, HUANG Y Q, et al. Efficient preparation of mesocarbon microbeads by pyrolysis of coal-tar pitch in the presence of rosin. J. Anal. Appl. Pyrol., 2011, 91(2): 310-315. |
[6] | LIN Q L, TANG H Y, LI C H, et al. Carbonization behavior of coal-tar pitch modified with lignin/silica hybrid and optical texture of resultant semi-cokes. J. Anal. Appl. Pyro., 2011, 90(1): 1-6. |
[7] | CHENG X L, ZHA Q F, ZHONG J T, et al. Needle coke formation derived from co-carbonization of ethylene tar pitch and polystyrene. Fuel, 2009, 88(11): 2188-2192. |
[8] | QIAO W M, YOON S H, MOCHIDA I. KOH activation of needle coke to develop activated carbons for high-performance EDLC. Energy Fuel, 2006, 20(4): 1680-1684. |
[9] | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666-669. |
[10] | NAM J A, NAHAIN A A, KIM S M, et al. Successful stabilization of functionalized hybrid graphene for high-performance antimicrobial activity. Acta Biomaterialia, 2013, 9(8): 7996-8003. |
[11] | WANG C Y, MALLELA J, GARAPATI U S, et al. A chitosan-modified graphene nanogel for noninvasive controlled drug release. Nanomedicine:Nanotechnology, Biology, and Medicine, 2013, 9(7): 903-911. |
[12] | BOLOTIN K I, SIKES K, JIANG Z, et al. Ultrahigh electron mobility in suspended grapheme. Solid State Commun., 2008, 146(9/10): 351-355. |
[13] | MOROZOV S V, NOVOSELOV K S, KATSNELSON M I, et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. , 2008, 100(1): 016602-1-4. |
[14] | ZIEGLER K. Minimal conductivity of graphene nonuniversal values from the Kubo formula. Phys. Rev. B, 2007, 75(23): 233407-1-4. |
[15] | NAIR R, BLAKE P, GRIGORENKO A, et al. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881): 1308. |
[16] | CAO Q, XIE X L, LI J P, et al. A novel method for removing quinoline insolubles and ash in coal tar pitch using electrostatic fields. Fuel, 2012, 96(1): 314-318. |
[17] | 何曼君,张红东. 高分子物理. 上海: 复旦大学出版社, 2007: 38-51. |
[18] | ZHU YANWU, MURALI SHANTHI, STOLLER MERYL D, et al. Carbon-based supercapacitors produced by activation of grapheme. Science, 2011, 332(24): 1537-1541. |
[19] | ZHAO Y, LI P, WANG X B. Influence of initial biofilm growth on electrochemical behavior in dual-chambered mediator microbial fuel cell. Journal of Fuel Chemistry and Technology, 2012, 40(8): 967-972. |
[1] | LI Honglan, ZHANG Junmiao, SONG Erhong, YANG Xinglin. Mo/S Co-doped Graphene for Ammonia Synthesis: a Density Functional Theory Study [J]. Journal of Inorganic Materials, 2024, 39(5): 561-568. |
[2] | SUN Chuan, HE Pengfei, HU Zhenfeng, WANG Rong, XING Yue, ZHANG Zhibin, LI Jinglong, WAN Chunlei, LIANG Xiubing. SiC-based Ceramic Materials Incorporating GNPs Array: Preparation and Mechanical Characterization [J]. Journal of Inorganic Materials, 2024, 39(3): 267-273. |
[3] | WANG Yanli, QIAN Xinyi, SHEN Chunyin, ZHAN Liang. Graphene Based Mesoporous Manganese-Cerium Oxides Catalysts: Preparation and Low-temperature Catalytic Reduction of NO [J]. Journal of Inorganic Materials, 2024, 39(1): 81-89. |
[4] | YANG Pingjun, LI Tiehu, LI Hao, DANG Alei. Effect of Graphene on Graphitization, Electrical and Mechanical Properties of Epoxy Resin Carbon Foam [J]. Journal of Inorganic Materials, 2024, 39(1): 107-112. |
[5] | DONG Yiman, TAN Zhan’ao. Research Progress of Recombination Layers in Two-terminal Tandem Solar Cells Based on Wide Bandgap Perovskite [J]. Journal of Inorganic Materials, 2023, 38(9): 1031-1043. |
[6] | CHEN Saisai, PANG Yali, WANG Jiaona, GONG Yan, WANG Rui, LUAN Xiaowan, LI Xin. Preparation and Properties of Green-yellow Reversible Electro-thermochromic Fabric [J]. Journal of Inorganic Materials, 2022, 37(9): 954-960. |
[7] | SUN Ming, SHAO Puzhen, SUN Kai, HUANG Jianhua, ZHANG Qiang, XIU Ziyang, XIAO Haiying, WU Gaohui. First-principles Study on Interface of Reduced Graphene Oxide Reinforced Aluminum Matrix Composites [J]. Journal of Inorganic Materials, 2022, 37(6): 651-659. |
[8] | AN Lin, WU Hao, HAN Xin, LI Yaogang, WANG Hongzhi, ZHANG Qinghong. Non-precious Metals Co5.47N/Nitrogen-doped rGO Co-catalyst Enhanced Photocatalytic Hydrogen Evolution Performance of TiO2 [J]. Journal of Inorganic Materials, 2022, 37(5): 534-540. |
[9] | WANG Hongli, WANG Nan, WANG Liying, SONG Erhong, ZHAO Zhankui. Hydrogen Generation from Formic Acid Boosted by Functionalized Graphene Supported AuPd Nanocatalysts [J]. Journal of Inorganic Materials, 2022, 37(5): 547-553. |
[10] | DONG Shurui, ZHAO Di, ZHAO Jing, JIN Wanqin. Effect of Ionized Amino Acid on the Water-selective Permeation through Graphene Oxide Membrane in Pervaporation Process [J]. Journal of Inorganic Materials, 2022, 37(4): 387-394. |
[11] | JIANG Lili, XU Shuaishuai, XIA Baokai, CHEN Sheng, ZHU Junwu. Defect Engineering of Graphene Hybrid Catalysts for Oxygen Reduction Reactions [J]. Journal of Inorganic Materials, 2022, 37(2): 215-222. |
[12] | WU Jing, YU Libing, LIU Shuaishuai, HUANG Qiuyan, JIANG Shanshan, ANTON Matveev, WANG Lianli, SONG Erhong, XIAO Beibei. NiN4/Cr Embedded Graphene for Electrochemical Nitrogen Fixation [J]. Journal of Inorganic Materials, 2022, 37(10): 1141-1148. |
[13] | LI Tie, LI Yue, WANG Yingyi, ZHANG Ting. Preparation and Catalytic Properties of Graphene-Bismuth Ferrite Nanocrystal Nanocomposite [J]. Journal of Inorganic Materials, 2021, 36(7): 725-732. |
[14] | XIANG Hui, QUAN Hui, HU Yiyuan, ZHAO Weiqian, XU Bo, YIN Jiang. Piezoelectricity of Graphene-like Monolayer ZnO and GaN [J]. Journal of Inorganic Materials, 2021, 36(5): 492-496. |
[15] | LI Hao, TANG Zhihong, ZHUO Shangjun, QIAN Rong. High Performance of Room-temperature NO2 Gas Sensor Based on ZIF8/rGO [J]. Journal of Inorganic Materials, 2021, 36(12): 1277-1282. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||