[1] Repins I, Contreras M A, Egaas B, et al. 19.9%-efficient ZnO/CdS/ CuInGaSe2 solar cell with 81.2% fill factor. Prog. Photovoltaics, 2008, 16(3): 235-239.[2] Contreras M A, Romero M J, Noufi R. Characterization of Cu(InGa)Se2 materials used in record performance solar cells. Thin Solid Films, 2006, 511: 51-54.[3] Contreras M A, Jones K M, Gedvilas L, et al. Preferred Orientation in Polycrystalline Cu(In,Ga)Se2 and Its Effect on Absorber Thin-films and Devices. 16th European Photovoltaic Solar Energy Conference and Exhibition, Glasgow, Scotland, 2000.[4] Hanna G, Mattheis J, Laptev V, et al. Influence of the selenium flux on the growth of Cu(In,Ga)Se2 thin films. Thin Solid Films, 2003, 431: 31-36.[5] Kim K H, Yoon K H, Yun J H, et al. Effects of Se flux on the microstructure of Cu(In,Ga)Se2 thin film deposited by a three-stage co-evaporation process. Electrochemical and Solid State Letters. 2006, 9(8): A382-A385.[6] Tiwari A N, Blunier S, Kessler K, et al. Direct growth of heteroepitaxial CuInSe2 layers on Si substrates. Appl. Phys. Lett., 1994, 65(18): 2299-2301.[7] Calvet W, Lehmann C, Plake T, et al. Epitaxial CuInSe2 on Si(111) using ditertbutyl disulfide as sulphur precursor. Thin Solid Films, 2005, 480: 347-351.[8] Igarashi O. Epitaxial-growth of CuInSe2 single-crystal by halogen transport method. J. Cryst. Growth. 1993, 130(3): 343-356.[9] Jaffe J E, Zunger A. Defect-induced nonpolar-to-polar transition at the surface of chalcopyrite semiconductors. Phys. Rev. B, 2001, 64(24): 241304-1-3.[10] Salinger J. Measurement of solar cell parameters with dark forward I-V characteristics. Acta Polytechnica, 2006, 46(4): 25-27. |