[1] Cottineau T, Toupin M, Delahaye T, et al. Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. Appl. Phys. A, 2006, 82(4): 599-606.
[2] Jeong Y U, Manthiram A. Nanocrystalline manganese oxides for electrochemical capacitors with neutral electrolytes. J. Electrochem. Soc., 2002, 149(11): A1419-A1422.
[3] Ravinder N R, Ramana G R. Sol-Gel MnO2 as an electrode material for electrochemical capacitors. J. Power Sources, 2003, 124(1): 330-337.
[4] 南俊民, 杨 勇, 林祖赓. 电化学电容器及其研究进展. 电源技术, 1996, 20(4): 152-157, 164.
[5] Peter J M, George L P, Sarki M K, et al. Measurement and modelling of the high-power performance of carbon-based supercapacitors. J. Power Sources, 2000, 91(1): 68-76.
[6] Bonnefoi L, Simon P, Fauvarque J F, et al. Electrode compositions for carbon power supercapacitors. J. Power Sources, 1999, 80(1/2): 149-155.
[7] Liu T C, Pell W G, Conway B E. Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes. Electrochimca Acta, 1997, 42(23/24):
3541-3552.
[8] Dixit M, Kamath P V, Gopalakrishnan J. Zinc-substituted a-nickel hydroxide as an electrode material for alkaline secondary cells. J. Electrochem. Soc., 1999, 146(1): 79-82.
[9] Pan T, Wang J M, Zhao Y L, et al. Al-stabilized α-nickel hydroxide prepared by electrochemical impregnation. Materials Chemistry and Physics, 2003, 78(3): 711-718.
[10] Mufit Akinc, Nathalie Jongen, Jacques Lemaitreb, et al. Synthesis of nickel hydroxide powders by urea decomposition. Journal of the European Ceramic Society, 1998, 18(11): 1559-1564.
[11] Cao M H, He X Y, Chen J, et al. Self-assembled nickel hydroxide three-dimensional nanostructures: a nanomaterial for alkaline rechargeable batteries. Crystal Growth & Design, 2007, 7(1): 170-174.
[12] 庄玉贵, 林东风, 陈秀宇(ZHUANG Yu-Gui, et al). 掺铝、钴纳米α-Ni(OH)2的固相合成及电化学性能研究. 无机化学学报(Chinese Journal of Inorganic Chemistry), 2009, 25(8): 1336-1341.
[13] Mo M S, Zeng J H, Liu X M, et al. Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes. Adv. Mater., 2002, 14(22): 1658-1662.
[14] Hernandez B A, Chang K-S, Fisher E R, et al. Sol-Gel template synthesis and characterization of BaTiO3 and PbTiO3 nanotubes. Chemistry of Materials, 2002, 14(2): 480-482.
[15] Anukorn Phuruangrat, Dong Jin Ham, Somchai Thongtem, et al. Electrochemical hydrogen evolution over MoO3 nanowires produced by microwave-assisted hydrothermal reaction. Electrochem. Commun., 2009, 11(9): 1740-1743.
[16] Zhu Y J, Wang W W, Qi R J, et al. Microwave-assisted synthesis of single crystalline tellurium nanorods and nanowires in ionic liquids. Angew. Chem. Int. Ed., 2004, 43(11): 1410-1414.
[17] 付 敏, 江志东, 马紫峰, 等(FU Min, et al) 微波水热法合成钛酸钠盐纳米管. 无机材料学报(Journal of Inorganic Materials), 2005, 20(4): 808-814.
[18] Cui L, Li J, Zhang X G. Preparation and properties of Co3O4 nanorods as supercapacitor material. J. Appl. Electrochem., 2009, 39(10): 1871-1876.
[19] Xu C J, Li B H, Du H D, et al. Supercapacitive studies on amorphous MnO2 in mild solutions. J. Power Sources, 2008, 184(2): 691-694.
[20] Nan K W, Lee E S, Kim J H, et al. Synthesis and electrochemical investigations of Ni1-xO thin films and Ni1-xO on three-dimensional carbon substrates for electrochemical capacitors. J. Electrochem. Soc., 2005, 152(11): A2123-A2129. |