Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (6): 675-682.DOI: 10.15541/jim20240471
• RESEARCH ARTICLE • Previous Articles Next Articles
DONG Chenyu1(), ZHENG Weijie1, MA Yifan2, ZHENG Chunyan1, WEN Zheng1,2(
)
Received:
2024-11-09
Revised:
2025-01-19
Published:
2025-06-20
Online:
2025-01-24
Contact:
WEN Zheng, professor. E-mail: zwen@qdu.edu.cnAbout author:
DONG Chenyu (1999-), female, Master candidate. E-mail: 18244065981@163.com
Supported by:
CLC Number:
DONG Chenyu, ZHENG Weijie, MA Yifan, ZHENG Chunyan, WEN Zheng. Characterizations by Piezoresponse Force Microscopy on Relaxor Properties of Pb(Mg,Nb)O3-PbTiO3 Ultra-thin Films[J]. Journal of Inorganic Materials, 2025, 40(6): 675-682.
Fig. 1 (a) XRD patterns of PMN-PT/SRO/GSO and PZT/SRO/GSO heterostructures, where PMN-PT and PZT are both 100 nm thick, in which the * symbols indicate the (00l) Bragg reflections peaks of GSO, with insets showing the AFM surface morphologies of GSO substrate, SRO/GSO, PMN-PT(5 nm)/SRO/GSO, PMN-PT(100 nm)/SRO/GSO thin-film heterostructures; (b) Cross-sectional STEM image and elemental distributions of the 5 nm thick PMN-PT/SRO/GSO heterostructure; (c) HAADF image of the PMN-PT layer
Fig. 3 PFM hysteresis characterizations on PZT and PMN-PT thin-film heterostructures with different thicknesses (a) Triangular pulse waveform for PFM test, where the red line represents the DC bias to polarize sample and the blue line represents the AC signal (VAC) used for readout. The polarization is read out in the Off-field mode when the DC bias is zero, and in the On-field mode when the DC bias is non-zero; (b) Sketches of the polarization response of the sample; (c) PFM hysteresis loops with various VAC; (d-g) PFM phases and amplitude hysteresis loops obtained under On-field and Off-field modes with various VAC: 40 nm-thick PZT (d) and PMN-PT (e), 5 nm-thick PZT (f) and PMN-PT (g). Colorful figures are available on website
Fig. 4 PFM hysteresis loops of 5 nm-thick PMN-PT films on various substrates (a) PMN-PT/SRO/GSO; (b) PMN-PT/SRO/DSO; (c) PMN-PT/SRO/STO. Colorful figures are available on website
[1] | LI F, CABRAL M J, XU B, et al. Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Science, 2019, 364(6437): 264. |
[2] | LI F, ZHANG S, YANG T, et al. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals. Nature Communications, 2016, 7: 13807. |
[3] | TYUNINA M, LEVOSKA J, JANOLIN P E, et al. Low- temperature relaxor state induced by epitaxial compression in PbSc0.5Nb0.5O3 films. Physical Review B, 2013, 87(22): 224107. |
[4] | THAKRE A, KUMAR A, LEE M Y, et al. Artificially induced normal ferroelectric behaviour in aerosol deposited relaxor 65PMN-35PT thick films by interface engineering. Journal of Materials Chemistry C, 2021, 9(10): 3403. |
[5] | WANG Y J, LUO C T, WANG S H, et al. Large piezoelectricity in ternary lead-free single crystals. Advanced Electronic Materials, 2020, 6(1): 1900949. |
[6] | MITTAL S K, JAMWAL U, YADAV D, et al. Enhanced sensitivity in capacitive temperature sensors through synergistic relaxor/ antiferroelectric composites. IEEE Transactions on Dielectrics and Electrical Insulation, 2024, 31(3): 1119. |
[7] | LU Y H, LIAO W Y, HE X C, et al. Piezoelectricity and up-conversion photoluminescence of Er3+-doped Pb(Zn1/3Nb2/3)O3- PbTiO3 single crystals. Ceramics International, 2024, 50(6): 9762. |
[8] | NIU J G, JIANG Y X, SHI X H, et al. Domain-modified engineering for low-power resistive switching in ferroelectric diodes. Applied Physics Letters, 2024, 124(4): 043503. |
[9] | YANG D, MOON Y, HAN N, et al. Solution-processable low-voltage carbon nanotube field-effect transistors with high-k relaxor ferroelectric polymer gate insulator. Nanotechnology, 2024, 35(29): 295202. |
[10] | PROSANDEEV S, GROLLIER J, TALBAYEV D, et al. Ultrafast neuromorphic dynamics using hidden phases in the prototype of relaxor ferroelectrics. Physical Review Letters, 2021, 126(2): 027602. |
[11] | NAGARAJAN V, GANPULE C S, NAGARAJ B, et al. Effect of mechanical constraint on the dielectric and piezoelectric behavior of epitaxial Pb(Mg1/3Nb2/3)O3(90%)-PbTiO3(10%) relaxor thin films. Applied Physics Letters, 1999, 75(26): 4183. |
[12] | TRSTENJAK U, DANEU N, RAFALOVSKYI T, et al. Polarization in pseudocubic epitaxial relaxed PMN-PT thin films. Applied Physics Letters, 2022, 120(4): 042901. |
[13] | WANG F F, WANG H N, YANG Q S, et al. Fine-grained relaxor ferroelectric PMN-PT ceramics prepared using hot-press sintering method. Ceramics International, 2021, 47(11): 15005 |
[14] | RYAN K, CARL M, MARGEAUX W, et al. Thickness-dependent domain wall reorientation in 70/30 lead magnesium niobate-lead titanate thin films. Journal of the American Ceramic Society, 2017, 100(9): 3961. |
[15] | ABEL F, JIEUN K, DEREK M, et al. Finite-size effects in lead scandium tantalate relaxor thin films. Physical Review B, 2020, 101(9): 094102. |
[16] | KIM J, TAKENAKA H, QI Y, et al. Epitaxial strain control of relaxor ferroelectric phase evolution. Advanced Materials, 2019, 31(21): 1901060. |
[17] | NADAUD K, BORDERON C, RENOUD R, et al. Study of the long time relaxation of the weak ferroelectricity in PbZrO3 antiferroelectric thin film using positive up negative down and first order reversal curves measurements. Thin Solid Films, 2023, 773: 139817. |
[18] | KANNAN V, KOCHMANN D M. Rate-dependent ferroelectric switching in barium titanate ceramics from modified PUND experiments. Extreme Mechanics Letters, 2022, 57: 101898. |
[19] | DING Y R, WENG Z P, LAN Z S, et al. Wake-up and imprint effects in hafnium oxide-based ferroelectric capacitors during cycling with different interval times. Electronics, 2024, 13(6): 1021. |
[20] | SINGH P, JHA R K, SINGH R K, et al. Electrical and ferroelectric properties of RF sputtered PZT/SBN on silicon for non-volatile memory applications. Materials Research Express, 2018, 5(2): 026301. |
[21] | YU H F, ZENG H R, CHU R Q, et al. Progress in nanoscale piezoresponse force microscopy on ferroelectrics. Journal of Inorganic Materials, 2005, 20(2): 257. |
[22] | DENIS A, VIOLETTA S, ALEXANDER A, et al. Defining ferroelectric characteristics with reversible piezoresponse: PUND switching spectroscopy PFM characterization. Nanotechnology, 2024, 35(17): 175702. |
[23] | GUAN Z, JIANG Z Z, TIAN B B, et al. Identifying intrinsic ferroelectricity of thin film with piezoresponse force microscopy. AIP Advances, 2017, 7(9): 095116. |
[24] | ALEXEI G, MARIN A, DENNIS M. Piezoresponse force microscopy and nanoferroic phenomena. Nature Communications, 2019, 10: 1661. |
[25] | STRELCOV E, KIM Y, YANG J C, et al. Role of measurement voltage on hysteresis loop shape in piezoresponse force microscopy. Applied Physics Letters, 2012, 101(19): 192902. |
[26] | MIAO P X, ZHAO Y G, LUO N N, et al. Ferroelectricity and self-polarization in ultrathin relaxor ferroelectric films. Scientific Reports, 2016, 6: 19965. |
[1] | LIU Song, ZHANG Faqiang, LUO Jin, LIU Zhifu. 0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3 Ferroelectric Thin Films: Preparation and Energy Storage [J]. Journal of Inorganic Materials, 2024, 39(3): 291-298. |
[2] | LIU Ying, LONG Xi-Fa. Growth and Characterization of a New Lead Lutetium Niobate with Lead Titanate Ferroelectric Crystal [J]. Journal of Inorganic Materials, 2014, 29(1): 47-51. |
[3] | XU Qin, DING Shi-Hua, SONG Tian-Xiu, PENG Yong, WU Xiao-Liang. Study of Dielectric Relaxation Behavior of Co-doped BCZT Ceramics [J]. Journal of Inorganic Materials, 2013, 28(4): 441-446. |
[4] | HE Yong, LI Xiao-Min, GAO Xiang-Dong, LENG Xue, WANG Wei. Microstructure and Electrical Properties of PMN-PT Thin Films Prepared by Oxygen Plasma Assisted Pulsed Laser Deposition [J]. Journal of Inorganic Materials, 2011, 26(11): 1227-1232. |
[5] | CUI Bin,TIAN Chang-Sheng,SHI Qi-Zhen. 0.80Pb(Mg1/3Nb2/3)O3-0.20PbTiO3 Ceramics Prepared by Semichemical Method [J]. Journal of Inorganic Materials, 2004, 19(6): 1313-1321. |
[6] | SUN Shi-Wen,PAN Xiao-Ming,LI Dong-Lin,LI Hong-Jun,ZHU Li-Hui,HUANG Qing-Wei,WANG Ping-Chu. Structure and Grain Growth Habit of Directional Solidification Ceramics of (1-x)Pb(Mg1/3Nb2/3)O3 - xPbTiO3 (x=0.30, 0.33, 0.38) Relaxor Ferroelectric Solid Solutions [J]. Journal of Inorganic Materials, 2004, 19(3): 541-545. |
[7] | XU Jia-Yue,TONG Jian,SHI Min-Li,LU Bao-Liang,ZHANG Ai-Qiong,FAN Shi-Ji. Growth and Electric Properties of Relaxor Ferroelectric Single Crystal PZNT93/7 [J]. Journal of Inorganic Materials, 2003, 18(2): 264-268. |
[8] | CAO Hu,FANG Bi-Jun,XU Hai-Qing,LUO Hao-Su. Elastic, Dielectric, Piezoelectric and Electromechanical Properties of Tetragonal Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) [J]. Journal of Inorganic Materials, 2003, 18(2): 465-469. |
[9] | CAO Hu,FANG Bi-Jun,XU Hai-Qing,LUO Hao-Su. Effects of Segregation on Composition and Dielectric and Piezoelectric Properties of Pb(Mg1/3Nb2/3)O3-38%PbTiO3 Single Crystal [J]. Journal of Inorganic Materials, 2003, 18(1): 50-56. |
[10] | WANG Xin,ZHUANG Zhi-Qiang,QI Xue-Jun. Preparation and Characterization of PMN-PT Relax Ferroelectric Powders by Sol-Gel Method [J]. Journal of Inorganic Materials, 2002, 17(2): 306-310. |
[11] | LI Guo-Rong,LUO Hao-Su,YIN Qing-Rui. PMN-PT Ferroelectric Relaxor Crystal and Its Ultrasonic Transducer [J]. Journal of Inorganic Materials, 2001, 16(6): 1077-1083. |
[12] | CAI Hong,GUI Zhi-Lun,LI Long-Tu. Composite Multilayer Ceramic Capacitors with X7R Characteristics [J]. Journal of Inorganic Materials, 2000, 15(6): 1117-1122. |
[13] | LI Dong-Lin,WANG Ping-Chu,LUO Hao-Su,YIN Zhi-Wen. Optical Micoscope Study of 90° Ferroelectric Domain in 67 Pb(Mg1/3Nb2/3) O3-33PbTiO3 Solid Solution Single Crystal [J]. Journal of Inorganic Materials, 2000, 15(4): 678-684. |
[14] | XU Gui--Sheng,LUO Hao-Su,XU Hai-Qing,QI Zhen-Yi,YIN Zhi-Wen. Domain Configuration Changing with Composition and Structure in PMNT Single Crystals [J]. Journal of Inorganic Materials, 2000, 15(2): 221-228. |
[15] | WU Jian-Xin,ZHUANG Zhi-Qiang. Dielectric and Piezoelectric Characteristics at Dynamic and DC Bias State for PBLZT Relaxor Ferroelectric Ceramic [J]. Journal of Inorganic Materials, 2000, 15(1): 97-102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||