Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (9): 1053-1062.DOI: 10.15541/jim20230596
• RESEARCH ARTICLE • Previous Articles Next Articles
CHEN Jia(), FAN Yiran, YAN Wenxin, HAN Yingchao(
)
Received:
2023-12-25
Revised:
2024-04-12
Published:
2024-09-20
Online:
2024-05-08
Contact:
HAN Yingchao, professor. E-mail: hanyingchao@whut.edu.cnAbout author:
CHEN Jia (1995-), male, PhD candidate. E-mail: 265998@whut.edu.cn
Supported by:
CLC Number:
CHEN Jia, FAN Yiran, YAN Wenxin, HAN Yingchao. Polyacrylate-calcium (cerium) Nanocluster Fluorescent Probes for Quantitative Detection of Inorganic Phosphorus[J]. Journal of Inorganic Materials, 2024, 39(9): 1053-1062.
Fig. 1 Morphology, size and structure of PAA-Ca(Ce) nanofluorescent probe (a) Cryo-TEM images; (b) Particle size statistical distribution calculated from cryo-TEM images; (c) DLS particle size distribution; (d) FT-IR spectra of the products of PAA-Ca(Ce) nanoprobes with PO43- solutions at concentration of 0 (I), 10 (II) and 50 (III) mmol/L
Fig. 2 Fluorescence stability of PAA-Ca(Ce) nanofluorescent probe for PO43- (a) Fluorescence emission spectra of PAA-Ca(Ce) and PO43- after reaction within 7 days; (b) Fluorescence emission spectra of the original PAA-Ca(Ce) solution and the cold-dry redissolved solution reacting with PO43-; (c) Fluorescence emission spectra of PAA-Ca(Ce) solution reacting with PO43- before and after filtration by ϕ0.22 µm membrane
Fig. 3 Fluorescence emission spectra of the reaction products between PAA-Ca(Ce) fluorescent probes and PO43- with different concentrations of (Ca2++Ce3+), and corresponding linear relationship of PO43- concentration-fluorescence intensity (a-c) Fluorescence emission spectra of PAA-Ca(Ce) probe and PO43- with different concentrations excited at 298 nm excitation under the conditions of (Ca2++Ce3+) concentration of (a) 18.7875, (b) 35.575 and (c) 75.150 mmol/L, respectively; (d-f) Relationship curves and linear fitting relationships between fluorescence peak intensity at 352 nm and PO43- concentration under the conditions of (Ca2++Ce3+) concentration of (d) 18.7878, (e) 35.575 and (f) 75.150 mmol/L, respectively; Colorful figures are available on website
Fig. 4 Relationship between PO43- concentration and fluorescence intensity at low PO43-concentration (a) Fluorescence emission spectra of PAA-Ca(Ce) probe with different concentrations of PO43- at 298 nm excition at (Ca2++Ce3+) concentration of 35.575 mmol/L; (b-d) Relationship between the fluorescence peak intensity at 352 nm and the concentration of PO43- with their corresponding fitting curves derivated from different models; Colorful figures are available on website
Fig. 5 Influence of reaction time and temperature on fluorescence intensity (a, b) Changes of fluorescence intensity detected at different time; (d, c) Changes of fluorescence intensity detected at different temperatures; Colorful figures are available on website
PO43- added / (mmol·L-1) | FP method | MARSP | ||
---|---|---|---|---|
PO43- detected/ (mmol·L-1) | Recovery/ % | PO43- detected/ (mmol·L-1) | Recovery/ % | |
10 | 9.633 | 96.326 | 9.096 | 90.962 |
20 | 20.611 | 103.056 | 18.694 | 93.472 |
30 | 28.856 | 96.186 | 26.634 | 88.780 |
40 | 40.009 | 100.022 | 37.719 | 94.299 |
50 | 48.634 | 97.269 | 47.779 | 95.559 |
60 | 60.304 | 100.507 | 55.134 | 91.891 |
70 | 68.462 | 97.802 | 66.391 | 94.844 |
80 | 79.159 | 98.949 | 75.191 | 93.989 |
90 | 87.964 | 97.737 | 87.080 | 96.755 |
100 | 100.526 | 100.526 | 94.505 | 94.505 |
110 | 110.024 | 100.022 | 99.928 | 90.844 |
120 | 116.614 | 97.178 | 115.249 | 96.041 |
130 | 131.590 | 101.223 | 122.934 | 94.564 |
140 | 139.348 | 99.534 | 125.775 | 89.839 |
150 | 145.318 | 96.879 | 140.961 | 93.974 |
160 | 161.331 | 100.832 | 156.500 | 97.813 |
170 | 171.033 | 100.608 | 164.876 | 96.986 |
180 | 176.630 | 98.128 | 170.588 | 94.771 |
190 | 191.582 | 100.832 | 178.270 | 93.826 |
200 | 198.966 | 99.483 | 196.275 | 98.138 |
Average recovery (mean±SD)/% | 99.155±1.880 | 94.093±2.566 |
Table 1 Recovery of PO43- detected by fluorescence probe (FP) method in contrast to that by molybdenum-antimony resistance spectrophotometry (MARSP)
PO43- added / (mmol·L-1) | FP method | MARSP | ||
---|---|---|---|---|
PO43- detected/ (mmol·L-1) | Recovery/ % | PO43- detected/ (mmol·L-1) | Recovery/ % | |
10 | 9.633 | 96.326 | 9.096 | 90.962 |
20 | 20.611 | 103.056 | 18.694 | 93.472 |
30 | 28.856 | 96.186 | 26.634 | 88.780 |
40 | 40.009 | 100.022 | 37.719 | 94.299 |
50 | 48.634 | 97.269 | 47.779 | 95.559 |
60 | 60.304 | 100.507 | 55.134 | 91.891 |
70 | 68.462 | 97.802 | 66.391 | 94.844 |
80 | 79.159 | 98.949 | 75.191 | 93.989 |
90 | 87.964 | 97.737 | 87.080 | 96.755 |
100 | 100.526 | 100.526 | 94.505 | 94.505 |
110 | 110.024 | 100.022 | 99.928 | 90.844 |
120 | 116.614 | 97.178 | 115.249 | 96.041 |
130 | 131.590 | 101.223 | 122.934 | 94.564 |
140 | 139.348 | 99.534 | 125.775 | 89.839 |
150 | 145.318 | 96.879 | 140.961 | 93.974 |
160 | 161.331 | 100.832 | 156.500 | 97.813 |
170 | 171.033 | 100.608 | 164.876 | 96.986 |
180 | 176.630 | 98.128 | 170.588 | 94.771 |
190 | 191.582 | 100.832 | 178.270 | 93.826 |
200 | 198.966 | 99.483 | 196.275 | 98.138 |
Average recovery (mean±SD)/% | 99.155±1.880 | 94.093±2.566 |
Fig. 7 Influence of different chemical environmental factors on PAA-Ca(Ce) nano-fluorescent probes (a, d) Fluorescence emission spectra of PAA-Ca(Ce) after reaction with various substances and comparison of fluorescence intensity at 352 nm emission peak, respectively; (b, e) Fluorescence emission spectra of PAA-Ca(Ce) reacting with PO43- at different concentrations of NaCl (0-100 mmol/L) and comparison of emission peak fluorescence intensity at 352 nm, respectively; (c, f) Fluorescence emission spectra of PO43- detected by PAA-Ca(Ce) under the conditions of PO43- concentration at 10 and 50 mmol/L while medium composed by ammonia-ammonium chloride buffer or ultra-pure water, and the fluorescence intensity comparison diagram of the emission peak at 352 nm; Colorful figures are available on website
Sample | FP method | MARSP | p value |
---|---|---|---|
1 | 2.648 | 2.552 | 0.9626 |
2 | 2.375 | 2.451 | |
3 | 2.599 | 2.604 | |
Average±SD | 2.541±0.119 | 2.536±0.064 |
Table 2 Determination of PO43- in mouse serum
Sample | FP method | MARSP | p value |
---|---|---|---|
1 | 2.648 | 2.552 | 0.9626 |
2 | 2.375 | 2.451 | |
3 | 2.599 | 2.604 | |
Average±SD | 2.541±0.119 | 2.536±0.064 |
[1] | CIESLIK B, KONIECZKA P. A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods. Journal of Cleaner Production, 2017, 142(4): 1728. |
[2] | WHYTE M P. Hypophosphatasia-aetiology, nosology, pathogenesis, diagnosis and treatment. Nature Reviews Endocrinology, 2016, 12: 233. |
[3] | PAN H, XU S, NI Y H. Rare-earth post-modified Zn-based coordination polymer microspheres: simple room-temperature preparation, fluorescent performances and application for detection of tryptophane. Sensors and Actuators B: Chemical, 2019, 283: 731. |
[4] | GUPTA SK, KADAM R M, PUJAR P K. Lanthanide spectroscopy in probing structure-property correlation in multi-site photoluminescent phosphors. Coordination Chemistry Reviews, 2020, 420: 213405. |
[5] | BINNEMANS K. Interpretation of europium (III) spectra. Coordination Chemistry Reviews, 2015, 295: 1. |
[6] | SYAMCHAND S S, SONY G. Europium enabled luminescent nanoparticles for biomedical applications. Journal of Luminescence, 2015, 165: 190. |
[7] | XING Q, ZHANG X, WU D, et al. Ultrasound-assisted synthesis and characterization of heparin-coated Eu3+ doped hydroxyapatite luminescent nanoparticles. Colloid Interface Science Communication, 2019, 29: 17. |
[8] |
LU Y, ENEA P, ZOLTÁN M. Direct determination of dissolved phosphate and silicate in seawater by ion exclusion chromatography sector field inductively coupled plasma mass spectrometry. Analytical Chemistry, 2014, 86(6): 3222.
DOI PMID |
[9] | SAKTHIVEL R, GANESH R, SUGANYA S. Approximate controllability of fractional neutral stochastic system with infinite delay. Reports on Mathematical Physics, 2012, 70(3): 291. |
[10] | 孙小鹏.基于高光谱技术检测水体中无机磷含量的实验研究. 广州: 华南农业大学硕士论文, 2020. |
[11] | 李翠婷, 王文志, 李东升, 等. 连续流动分析法测定水中总磷不确定度的评定. 环境与发展, 2020, 32(1): 140. |
[12] | 王琴敏. 连续流动分析法同时测定水中总磷总氮. 当代化工研究, 2021, 92(15): 119. |
[13] |
HUANG Y, ZHANG Y B, HUO F J, et al. A new strategy: distinguishable multi-substance detection, multiple pathway tracing based on a new site constructed by the reaction process and its tumor targeting. Journal of the American Chemical Society, 2020, 142(43): 18706.
DOI PMID |
[14] |
JIA Q, ZHANG R L, WANG Y D, et al. A metabolic acidity-activatable calcium phosphate probe with fluorescence signal amplification capabilities for non-invasive imaging of tumor malignancy. Science Bulletin, 2022, 67(3): 288.
DOI PMID |
[15] | 胡悦, 权思齐, 李佳楠, 等. 多肽荧光探针特异性识别细胞中的Cu2+和Cys. 中国科学: 化学, 2022, 52(1): 117. |
[16] |
ZHENG B, FAN J Y, CHEN B, et al. Rare-earth doping in nanostructured inorganic materials. Chemical Reviews, 2022, 122(6): 5519.
DOI PMID |
[17] | 刘文芳, 王连连, 王娜, 等. 新型稀土荧光探针的设计、合成及在检测杀草强中的应用. 稀土, 2021, 42(5): 95. |
[18] | TANG Z, CHEN H, HE H, et al. Assays for alkaline phosphatase activity: progress and prospects. Trac-Trends in Analytical Chemistry, 2019, 113: 32. |
[19] | HAN L, LIU S G, YANG, Y Z, et al. A lanthanide coordination polymer as a ratiometric fluorescent probe for rapid and visual sensing of phosphate based on the target-triggered competitive effect. Journal of Materials Chemistry C, 2020, 8(37): 13063. |
[20] |
WU H F, TONG C L. A Specific turn-on fluorescent sensing for ultrasensitive and selective detection of phosphate in environmental samples based on antenna effect-improved FRET by surfactant, ACS Sensors, 2018, 3(8): 1539.
DOI PMID |
[21] |
LI G Y, TONG C L. Dual-functional lanthanide metal organic frameworks for visual and ultrasensitive ratiometric fluorescent detection of phosphate based on aggregation-induced energy transfer. Analytica Chimica Acta, 2020, 1133: 11.
DOI PMID |
[22] | 张小君.磷酸钙基质中阴离子对Eu3+荧光性能的影响规律及应用研究. 武汉: 武汉理工大学硕士论文, 2020. |
[23] | WEI J J, ZHU C L, ZENG Z H, et al. Bioinspired cellulose‐integrated MXene-based hydrogels for multifunctional sensing and electromagnetic interference shielding. Interdisciplinary Materials, 2022, 1(4): 495. |
[24] | LI F, XING Q G, HAN Y C, et al. Ultrasonically assisted preparation of poly(acrylic acid)/calcium phosphate hybrid nanogels as pH-responsive drug carriers. Materials Science & Engineering C-Materials for Biological Applications, 2017, 80: 688. |
[25] |
ESCUDERO A, CALVO M E, RIVERA-FERNANDEZ S, et al. Microwave-assisted synthesis of biocompatible europium-doped calcium hydroxyapatite and fluoroapatite luminescent nanospindles functionalized with poly(acrylic acid). Langmuir, 2013, 29(6): 1985.
DOI PMID |
[26] | KIRWAN L J, FAWELL P D, VAN BRONSWIJK W. In situ FTIR-ATR examination of poly(acrylic acid) adsorbed onto hematite at low pH. Langmuir, 2003, 19(14): 5802. |
[27] | DING H C, PAN H H, XU X R, et al. Toward a detailed understanding of magnesium ions on hydroxyapatite crystallization inhibition. Crystal Growth & Design, 2014, 14(2): 763. |
[28] | LIU W Q, DU Z F, QIAN Y, et al. A specific colorimetric probe for phosphate detection based on anti-aggregation of gold nanoparticles. Sensors and Actuators B: Chemical, 2013, 176: 927. |
[29] | QIN J L, ZHONG Z Y, MA J. Biomimetic synthesis of hybrid hydroxyapatite nanoparticles using nanogel template for controlled release of bovine serum albumin. Materials Science & Engineering C-Materials for Biological Applications, 2016, 62: 377. |
[30] |
ZHOU W T, WANG L, LIU C, et al. Quantification of cyclic DNA polymerization with lanthanide coordination nanomaterials for liquid biopsy. Chemical Science, 2020, 11(14): 3745.
DOI PMID |
[31] | ZHANG J, WANG Y H, WEN Y, et al. Luminescence properties of Ca10K(PO4)7:RE3+ (RE = Ce, Tb, Dy, Tm and Sm) under vacuum ultraviolet excitation. Journal of Alloys and Compounds, 2011, 509(14): 4649. |
[32] | AZENHA M E, BURROWS H D, FONSECA S M, et al. Luminescence from cerium(III) acetate complexes in aqueous solution: considerations on the nature of carboxylate binding to trivalent lanthanides. New Journal of Chemistry, 2008, 32(9): 1531. |
[33] | XU S H, LI L F, LIN D, et al. Rare-earth ions coordination enhanced ratiometric fluorescent sensing platform for quantitative visual analysis of antibiotic residues in real samples. Chinese Chemical Letters, 2023, 34(6): 308. |
[1] | HU Ying, LI Ziqing, FANG Xiaosheng. Solution-prepared AgBi2I7 Thin Films and Their Photodetecting Properties [J]. Journal of Inorganic Materials, 2023, 38(9): 1055-1061. |
[2] | DONG Siyin, TIE Shujie, YUAN Ruihan, ZHENG Xiaojia. Research Progress on Low-dimensional Halide Perovskite Direct X-ray Detectors [J]. Journal of Inorganic Materials, 2023, 38(9): 1017-1030. |
[3] | LI Qianli, LI Naixin, LI Yucheng, LIU Shenye, CHENG Shuai, YANG Guang, REN Kuan, WANG Feng, ZHAO Jingtai. Research Progress of Radio-photoluminescence Materials and Their Applications [J]. Journal of Inorganic Materials, 2023, 38(7): 731-749. |
[4] | SUN Han, LI Wenjun, JIA Zixuan, ZHANG Yan, YIN Liying, JIE Wanqi, XU Yadong. Effect of ACRT Technology on the Large Size ZnTe Crystals Grown by Solution Method and Corresponding Terahertz Properties [J]. Journal of Inorganic Materials, 2023, 38(3): 310-315. |
[5] | DU Qiujing, LIU Tianzhi, CHEN Jufeng, CHEN Hangrong. Construction of Prussian Blue Fluorescent Nanoprobe for Specific Detection of HClO in Cancer Cells [J]. Journal of Inorganic Materials, 2023, 38(1): 55-61. |
[6] | LI Yanyan, PENG Yusi, LIN Chenglong, LUO Xiaoying, TENG Zheng, ZHANG Xi, HUANG Zhengren, YANG Yong. Nanomaterials and Biosensing Technology for the SARS-CoV-2 Detection [J]. Journal of Inorganic Materials, 2023, 38(1): 3-31. |
[7] | LIU Yao, YOU Xunhai, ZHAO Bing, LUO Xiaoying, CHEN Xing. Functional Nanomaterials for Electrochemical SRAS-CoV-2 Biosensors: a Review [J]. Journal of Inorganic Materials, 2023, 38(1): 32-42. |
[8] | CAO Zhijun, LI Zaijun. Ruthenium-biocarbon Mimic Enzyme: Synthesis and Application in Colorimetric Detection of Pesticide Chlorpyrifos [J]. Journal of Inorganic Materials, 2022, 37(5): 554-560. |
[9] | SHAN Wei,FU Zhengqian,ZHANG Faqiang,MA Mingsheng,LIU Zhifu,LI Yongxiang. SnS2 Nanoplates: Synthesis and NO2 Sensing Property [J]. Journal of Inorganic Materials, 2020, 35(4): 497-504. |
[10] | CHEN Lei, CHEN Lanhua, ZHANG Yugang, XIE Jian, DIWU Juan. A Layered Uranyl Coordination Polymer with UV Detection Sensitivity, Stability, and Reusability [J]. Journal of Inorganic Materials, 2020, 35(12): 1391-1397. |
[11] | ZHANG Zhi-Ming,FANG Xiao-Sheng. Preparation and Photodetection Property of ZnO Nanorods/ZnCo2O4 Nanoplates Heterojunction [J]. Journal of Inorganic Materials, 2019, 34(9): 991-996. |
[12] | DENG Min, JIANG Qi, DUAN Zhi-Hong, LIU Qing-Qing, JIANG Li, LU Xiao-Ying. Rice-like CuO Chemically Modified Electrode: Preparation and Detection for Glucose [J]. Journal of Inorganic Materials, 2019, 34(2): 152-158. |
[13] | YAO Mei-Na, YANG Xian-Jin, CUI Zhen-Duo, ZHU Sheng-Li, LI Zhao-Yang, LIANG Yan-Qin. Detection of Cd2+ by Square Wave Anodic Stripping Voltammetry Using an Activated Bismuth-film Electrodes [J]. Journal of Inorganic Materials, 2019, 34(1): 91-95. |
[14] | FAN Mao, WANG Lin, PEI Cheng-Xin, SHI Wei-Qun. Alkalization Intercalation of MXene for Electrochemical Detection of Uranyl Ion [J]. Journal of Inorganic Materials, 2019, 34(1): 85-90. |
[15] | ZHAO Hai-Lei, SUN Zhen-Chuan, CHEN Kui, WANG Hong-Zhi, YANG Yan-Dong, ZHOU Jian-Jun, LI Feng-Yuan, ZHANG Bing, SONG Fa-Liang. Synthesis, Property and Wear Detection of Disc Cutter for Shield Tunneling Machine of Nanobelt Ca0.68Si9Al3(ON)16 : Eu2+ Luminescence Fibers [J]. Journal of Inorganic Materials, 2018, 33(8): 866-872. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||