 
 Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (1): 58-64.DOI: 10.15541/jim20210263
• RESEARCH ARTICLE • Previous Articles Next Articles
					
													ZHANG Xian( ), ZHANG Ce, JIANG Wenjun, FENG Deqiang, YAO Wei(
), ZHANG Ce, JIANG Wenjun, FENG Deqiang, YAO Wei( )
)
												  
						
						
						
					
				
Received:2021-04-21
															
							
																	Revised:2021-07-02
															
							
															
							
																	Published:2022-01-20
															
							
																	Online:2021-07-12
															
						Contact:
								YAO Wei, professor. E-mail: yaowei@qxslab.cn      
													About author:ZHANG Xian(1989-), male, PhD, senior engineer. E-mail: zhangxian@qxslab.cn				
													Supported by:CLC Number:
ZHANG Xian, ZHANG Ce, JIANG Wenjun, FENG Deqiang, YAO Wei. Synthesis, Electronic Structure and Visible Light Photocatalytic Performance of Quaternary BiMnVO5[J]. Journal of Inorganic Materials, 2022, 37(1): 58-64.
 
																													Fig. 8 (a) Curves of MB concentration vs time under different catalytic conditions, and (b) curves of MB concentration vs time with different scavengers
 
																													Fig. 9 (a) Repeated test for visible light degradation of MB for BMVO-H sample, (b) SEM image of BMVO-H sample after 5 cycles, and (c) XRD patterns of BMVO-H sample before and after 5 cycles
| [1] | ZHAO C, CHEN Z, SHI R, et al. Recent advances in conjugated polymers for visible-light-driven water splitting. Advanced Materials, 2020, 32(28):1907296. DOI URL | 
| [2] | KIM T W, CHOI K S. Nanoporous BiVO4 photoanodes with dual- layer oxygen evolution catalysts for solar water splitting. Science, 2014, 343(6174):990-994. DOI URL | 
| [3] | YUAN D, SUN M, TANG S, et al. All-solid-state BiVO4/ZnIn2S4 Z-scheme composite with efficient charge separations for improved visible light photocatalytic organics degradation. Chinese Chemical Letters, 2020, 31(2):547-550. DOI URL | 
| [4] | CHEN Q, CHENG X, LONG H, et al. A short review on recent progress of Bi/semiconductor photocatalysts: the role of Bi metal. Chinese Chemical Letters, 2020, 31(10):2583-2590. DOI URL | 
| [5] | TOKUNAGA S, KATO H, KUDO A. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chemistry of Materials, 2001, 13(12):4624-4628. DOI URL | 
| [6] | ZHOU B, ZHAO X, LIU H, et al. Visible-light sensitive cobalt- doped BiVO4 (Co-BiVO4) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions. Applied Catalysis B: Environmental, 2010, 99(1):214-221. DOI URL | 
| [7] | HE B, LI Z, ZHAO D, et al. Fabrication of porous Cu-doped BiVO4 nanotubes as efficient oxygen-evolving photocatalysts. ACS Applied Nano Materials, 2018, 1(6):2589-2599. DOI URL | 
| [8] | REGMI C, KSHETRI Y.K, KIM T H. et al. Visible-light-induced Fe-doped BiVO4 photocatalyst for contaminated water treatment. Molecular Catalysis, 2017, 432:220-231. DOI URL | 
| [9] | REGMI C, KSHETRI Y K, KIM T H, et al. Fabrication of Ni-doped BiVO4 semiconductors with enhanced visible-light photocatalytic performances for wastewater treatment. Applied Surface Science, 2017, 413:253-265. DOI URL | 
| [10] | LUO W, LI Z, YU T, et al. Effects of surface electrochemical pretreatment on the photoelectrochemical performance of Mo- doped BiVO4. The Journal of Physical Chemistry C, 2012, 116(8):5076-5081. DOI URL | 
| [11] | LUO W, YANG Z, LI Z, et al. Solar hydrogen generation from seawater with a modified BiVO4 photoanode. Energy & Environmental Science, 2011, 4(10):4046-4051. | 
| [12] | ZHONG D K, CHOI S, GAMELIN D R. Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W:BiVO4. Journal of the American Chemical Society, 2011, 133(45):18370-18377. DOI URL | 
| [13] | ZHONG X, HE H, YANG M, et al. In3+-doped BiVO4 photoanodes with passivated surface states for photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2018, 6(22):10456-10465. DOI URL | 
| [14] | USAI S, OBREGÓN S, BECERRO A I, et al. Monoclinic-tetragonal heterostructured BiVO4 by yttrium doping with improved photocatalytic activity. The Journal of Physical Chemistry C, 2013, 117(46):24479-24484. DOI URL | 
| [15] | GOVINDARAJU G V, MORBEC J M, GALLI G A, et al. Experimental and computational investigation of lanthanide ion doping on BiVO4 photoanodes for solar water splitting. The Journal of Physical Chemistry C, 2018, 122(34):19416-19424. DOI URL | 
| [16] | LUO Y, TAN G, DONG G, et al. Structural transformation of Sm3+ doped BiVO4 with high photocatalytic activity under simulated sun-light. Applied Surface Science, 2015, 324:505-511. DOI URL | 
| [17] | BAEK J H, GILL T M, ABROSHAN H, et al. Selective and efficient Gd-Doped BiVO4 photoanode for two-electron water oxidation to H2O2. ACS Energy Letters, 2019, 4(3):720-728. DOI URL | 
| [18] | RADOSAVLJEVIC I, HOWARD J A K, SLEIGHT A W. Synthesis and structure of two new bismuth cadmium vanadates, BiCdVO5 and BiCd2VO6, and structures of BiCa2AsO6 and BiMg2PO6. International Journal of Inorganic Materials, 2000, 2(6):543-550. DOI URL | 
| [19] | XUN X, YOKOCHI A, SLEIGHT A W. Synthesis and structure of BiMnVO5 and BiMnAsO5. Journal of Solid State Chemistry, 2002, 168(1):224-228. DOI URL | 
| [20] | ELIZIARIO NUNES S, WANG C H, SO K, et al. Bismuth zinc vanadate, BiZn2VO6: new crystal structure type and electronic structure. Journal of Solid State Chemistry, 2015, 222:12-17. DOI URL | 
| [21] | RADOSAVLJEVIC I, EVANS J S O, SLEIGHT A W. Synthesis and structure of bismuth copper vanadate, BiCu2VO6. Journal of Solid State Chemistry, 1998, 141(1):149-154. DOI URL | 
| [22] | HUANG J, SLEIGHT A W. Synthesis, crystal structure, and optical properties of a new bismuth magnesium vanadate: BiMg2VO6. Journal of Solid State Chemistry, 1992, 100(1):170-178. DOI URL | 
| [23] | RADOSAVLJEVIC I, EVANS J S O, SLEIGHT A W. Synthesis and structure of BiCa2VO6. Journal of Solid State Chemistry, 1998, 137(1):143-147. DOI URL | 
| [24] | BHIM A, SASMAL S, GOPALAKRISHNAN J, et al. Visible- light-activated C-C bond cleavage and aerobic oxidation of benzyl alcohols employing BiMXO5 (M=Mg, Cd, Ni, Co, Pb, Ca and X=V, P). Chemistry - An Asian Journal, 2020, 15(19):3104-3115. DOI URL | 
| [25] | LIU H, NAKAMURA R, NAKATO Y. Bismuth-copper vanadate BiCu2VO6 as a novel photocatalyst for efficient visible-light-driven oxygen evolution. ChemPhysChem, 2005, 6(12):2499-2502. DOI URL | 
| [26] | VAN ELP J, POTZE R H, ESKES H, et al. Electronic structure of MnO. Physical Review B, 1991, 44(4):1530-1537. DOI URL | 
| [27] | MASSIDDA S, CONTINENZA A, POSTERNAK M, et al. Band- structure picture for MnO reexplored: a model GW calculation. Physical Review Letters, 1995, 74(12):2323-2326. DOI URL | 
| [28] | COOPER J K, GUL S, TOMA F M, et al. Electronic structure of monoclinic BiVO4. Chemistry of Materials, 2014, 26(18):5365-5373. DOI URL | 
| [29] | BLAHA P, SCHWARZ K, MADSEN G K H, et al. WIEN2k, an augmented plane wave+ local orbitals program for calculating crystal properties. 2001. | 
| [30] | PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18):3865-3868. DOI URL | 
| [31] | BLÖCHL P E. Projector augmented-wave method. Physical Review B, 1994, 50(24):17953-17979. DOI URL | 
| [32] | KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 1999, 59(3):1758-1775. DOI URL | 
| [33] | JIANG Z, LIU Y, JING T, et al. Enhancing the photocatalytic activity of BiVO4 for oxygen evolution by Ce doping: Ce3+ ions as hole traps. The Journal of Physical Chemistry C, 2016, 120(4):2058-2063. DOI URL | 
| [34] | PALANISELVAM T, SHI L, METTELA G, et al. Vastly enhanced BiVO4 photocatalytic OER performance by NiCoO2 as cocatalyst. Advanced Materials Interfaces, 2017, 4(19):1700540. DOI URL | 
| [35] | YAO X, ZHAO X, HU J, et al. The self-passivation mechanism in degradation of BiVO4 photoanode. iScience, 2019, 19:976-985. DOI URL | 
| [36] | BIESINGER M C, PAYNE B P, GROSVENOR A P, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 2011, 257(7):2717-2730. DOI URL | 
| [37] | LI M, LEI W, YU Y, et al. High-performance asymmetric supercapacitors based on monodisperse MnO nanocrystals with high energy densities. Nanoscale, 2018, 10(34):15926-15931. DOI URL | 
| [38] | KORTÜM G, BRAUN W, HERZOG G. Principles and techniques of diffuse-reflectance spectroscopy. Angewandte Chemie International Edition, 1963, 2(7):333-341. | 
| [1] | FAN Xiaoxuan, ZHENG Yonggui, XU Lirong, YAO Zimin, CAO Shuo, WANG Kexin, WANG Jiwei. Organic Pollutant Fenton Degradation Driven by Self-activated Afterglow from Oxygen-vacancy-rich LiYScGeO4: Bi3+ Long Afterglow Phosphor [J]. Journal of Inorganic Materials, 2025, 40(5): 481-488. | 
| [2] | JIA Xianghua, ZHANG Huixia, LIU Yanfeng, ZUO Guihong. Cu2O/Cu Hollow Spherical Heterojunction Photocatalysts Prepared by Wet Chemical Approach [J]. Journal of Inorganic Materials, 2025, 40(4): 397-404. | 
| [3] | MA Binbin, ZHONG Wanling, HAN Jian, CHEN Liangyu, SUN Jingjing, LEI Caixia. ZIF-8/TiO2 Composite Mesocrystals: Preparation and Photocatalytic Activity [J]. Journal of Inorganic Materials, 2024, 39(8): 937-944. | 
| [4] | CAO Qingqing, CHEN Xiangyu, WU Jianhao, WANG Xiaozhuo, WANG Yixuan, WANG Yuhan, LI Chunyan, RU Fei, LI Lan, CHEN Zhi. Visible-light Photodegradation of Tetracycline Hydrochloride on Self-sensitive Carbon-nitride Microspheres Enhanced by SiO2 [J]. Journal of Inorganic Materials, 2024, 39(7): 787-792. | 
| [5] | WANG Zhaoyang, QIN Peng, JIANG Yin, FENG Xiaobo, YANG Peizhi, HUANG Fuqiang. Sandwich Structured Ru@TiO2 Composite for Efficient Photocatalytic Tetracycline Degradation [J]. Journal of Inorganic Materials, 2024, 39(4): 383-389. | 
| [6] | LI Yuejun, CAO Tieping, SUN Dawei. Bi4O5Br2/CeO2 Composite with S-scheme Heterojunction: Construction and CO2 Reduction Performance [J]. Journal of Inorganic Materials, 2023, 38(8): 963-970. | 
| [7] | WU Lin, HU Minglei, WANG Liping, HUANG Shaomeng, ZHOU Xiangyuan. Preparation of TiHAP@g-C3N4 Heterojunction and Photocatalytic Degradation of Methyl Orange [J]. Journal of Inorganic Materials, 2023, 38(5): 503-510. | 
| [8] | LING Jie, ZHOU Anning, WANG Wenzhen, JIA Xinyu, MA Mengdan. Effect of Cu/Mg Ratio on CO2 Adsorption Performance of Cu/Mg-MOF-74 [J]. Journal of Inorganic Materials, 2023, 38(12): 1379-1386. | 
| [9] | NIU Haibin, HUANG Jiahui, LI Qianwen, MA Dongyun, WANG Jinmin. Directly Hydrothermal Growth and Electrochromic Properties of Porous NiMoO4 Nanosheet Films [J]. Journal of Inorganic Materials, 2023, 38(12): 1427-1433. | 
| [10] | SUN Chen, ZHAO Kunfeng, YI Zhiguo. Research Progress in Catalytic Total Oxidation of Methane [J]. Journal of Inorganic Materials, 2023, 38(11): 1245-1256. | 
| [11] | MA Xinquan, LI Xibao, CHEN Zhi, FENG Zhijun, HUANG Juntong. BiOBr/ZnMoO4 Step-scheme Heterojunction: Construction and Photocatalytic Degradation Properties [J]. Journal of Inorganic Materials, 2023, 38(1): 62-70. | 
| [12] | YAO Yishuai, GUO Ruihua, AN Shengli, ZHANG Jieyu, CHOU Kuochih, ZHANG Guofang, HUANG Yarong, PAN Gaofei. In-situ Loaded Pt-Co High Index Facets Catalysts: Preparation and Electrocatalytic Performance [J]. Journal of Inorganic Materials, 2023, 38(1): 71-78. | 
| [13] | CHEN Hanxiang, ZHOU Min, MO Zhao, YI Jianjian, LI Huaming, XU Hui. 0D/2D CoN/g-C3N4 Composites: Structure and Photocatalytic Performance for Hydrogen Production [J]. Journal of Inorganic Materials, 2022, 37(9): 1001-1008. | 
| [14] | XUE Hongyun, WANG Congyu, MAHMOOD Asad, YU Jiajun, WANG Yan, XIE Xiaofeng, SUN Jing. Two-dimensional g-C3N4 Compositing with Ag-TiO2 as Deactivation Resistant Photocatalyst for Degradation of Gaseous Acetaldehyde [J]. Journal of Inorganic Materials, 2022, 37(8): 865-872. | 
| [15] | WEN Zhiqin, HUANG Binrong, LU Taoyi, ZOU Zhengguang. Pressure on the Structure and Thermal Properties of PbTiO3: First-principle Study [J]. Journal of Inorganic Materials, 2022, 37(7): 787-794. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||