 
 Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (1): 65-71.DOI: 10.15541/jim20210192
• RESEARCH ARTICLE • Previous Articles Next Articles
					
													CHEN Xiaomei( ), CHEN Ying, YUAN Xia(
), CHEN Ying, YUAN Xia( )
)
												  
						
						
						
					
				
Received:2021-03-24
															
							
																	Revised:2021-04-23
															
							
															
							
																	Published:2022-01-20
															
							
																	Online:2021-11-12
															
						Contact:
								YUAN Xia, professor. E-mail: yuanxia@xtu.edu.cn      
													About author:CHEN Xiaomei(1996-), female, Master candidate. E-mail: cxm1077@163.com				
													Supported by:CLC Number:
CHEN Xiaomei, CHEN Ying, YUAN Xia. Decomposition of Cyclohexyl Hydroperoxide Catalyzed by Core-shell Material Co3O4@SiO2[J]. Journal of Inorganic Materials, 2022, 37(1): 65-71.
 
																													Fig. 4 TEM images and shell thickness statistics of Co3O4@SiO2 prepared with different concentrations of CTAB (a, b) 5 mmol/L; (c, d) 14 mmol/L; (e, f) 25 mmol/L
| Sample | nCTAB/nTEOS | SBET/(m2∙g-1) | Dpore/nm | Vpore/(cm3∙g-1) | 
|---|---|---|---|---|
| Co3O4@SiO2 (VFETOH = 30%) | 2.56 | 332 | 3.18 | 0.22 | 
| Co3O4@SiO2 (VFETOH = 50%) | 2.56 | 334 | 3.18 | 0.24 | 
| Co3O4@SiO2 (VFETOH = 90%) | 2.56 | 319 | 2.94 | 0.18 | 
| Co3O4@SiO2 (CCTAB = 5 mmol/L) | 0.93 | 254 | 2.82 | 0.16 | 
| Co3O4@SiO2 (CCTAB = 25 mmol/L) | 4.67 | 396 | 2.94 | 0.21 | 
| Co3O4@SiO2 (VTEOS = 0.8 mL) | 3.84 | 327 | 2.94 | 0.18 | 
| Co3O4@SiO2 (VTEOS = 2.0 mL) | 1.54 | 486 | 2.94 | 0.27 | 
Table 1 Physical structural properties of catalytic materials
| Sample | nCTAB/nTEOS | SBET/(m2∙g-1) | Dpore/nm | Vpore/(cm3∙g-1) | 
|---|---|---|---|---|
| Co3O4@SiO2 (VFETOH = 30%) | 2.56 | 332 | 3.18 | 0.22 | 
| Co3O4@SiO2 (VFETOH = 50%) | 2.56 | 334 | 3.18 | 0.24 | 
| Co3O4@SiO2 (VFETOH = 90%) | 2.56 | 319 | 2.94 | 0.18 | 
| Co3O4@SiO2 (CCTAB = 5 mmol/L) | 0.93 | 254 | 2.82 | 0.16 | 
| Co3O4@SiO2 (CCTAB = 25 mmol/L) | 4.67 | 396 | 2.94 | 0.21 | 
| Co3O4@SiO2 (VTEOS = 0.8 mL) | 3.84 | 327 | 2.94 | 0.18 | 
| Co3O4@SiO2 (VTEOS = 2.0 mL) | 1.54 | 486 | 2.94 | 0.27 | 
| Entry | Sample | Co content/% | 
|---|---|---|
| 1 | Co3O4@SiO2 (VFETOH = 90%) | 39.9 | 
| 2 | Co3O4@SiO2 (CCTAB = 5 mmol/L) | 40.1 | 
| 3 | Co3O4@SiO2 (CCTAB = 25 mmol/L) | 39.3 | 
| 4 | Co3O4@SiO2 (VTEOS = 0.8 mL) | 47.8 | 
| 5 | Co3O4@SiO2 (VTEOS = 2.0 mL) | 30.6 | 
Table 2 Co content of catalytic materials
| Entry | Sample | Co content/% | 
|---|---|---|
| 1 | Co3O4@SiO2 (VFETOH = 90%) | 39.9 | 
| 2 | Co3O4@SiO2 (CCTAB = 5 mmol/L) | 40.1 | 
| 3 | Co3O4@SiO2 (CCTAB = 25 mmol/L) | 39.3 | 
| 4 | Co3O4@SiO2 (VTEOS = 0.8 mL) | 47.8 | 
| 5 | Co3O4@SiO2 (VTEOS = 2.0 mL) | 30.6 | 
| Catalytic material | Con./% | Selectivity/% | ||||
|---|---|---|---|---|---|---|
| A | K | Acid | Ester | A+K | ||
| Blank | 11.58 | 162.27 | 36.16 | 12.56 | 14.40 | 198.43 | 
| Co3O4 | 86.83 | 69.15 | 38.08 | 6.73 | -15.63 | 107.23 | 
| Co3O4@SiO2 (VFETOH = 30%) | 41.54 | 66.93 | 37.70 | 8.14 | -26.54 | 104.62 | 
| Co3O4@SiO2 (VFETOH = 50%) | 60.44 | 67.73 | 32.87 | 7.33 | -18.46 | 100.60 | 
| Co3O4@SiO2 (VFETOH = 90%) | 52.62 | 64.58 | 30.20 | 8.54 | -25.15 | 94.79 | 
| Co3O4@SiO2 (CCTAB = 5 mmol/L) | 55.62 | 74.72 | 36.68 | 6.59 | -20.69 | 111.40 | 
| Co3O4@SiO2 (CCTAB =25 mmol/L) | 66.68 | 72.18 | 31.01 | 6.83 | -15.76 | 103.19 | 
| Co3O4@SiO2 (VTEOS = 0.8 mL) | 81.68 | 70.60 | 34.06 | 7.12 | -15.97 | 104.65 | 
| Co3O4@SiO2 (VTEOS = 2.0 mL) | 73.55 | 64.75 | 27.90 | 6.28 | -18.74 | 92.64 | 
Table 3 Catalytic performance of catalytic materials in CHHP decomposition reaction
| Catalytic material | Con./% | Selectivity/% | ||||
|---|---|---|---|---|---|---|
| A | K | Acid | Ester | A+K | ||
| Blank | 11.58 | 162.27 | 36.16 | 12.56 | 14.40 | 198.43 | 
| Co3O4 | 86.83 | 69.15 | 38.08 | 6.73 | -15.63 | 107.23 | 
| Co3O4@SiO2 (VFETOH = 30%) | 41.54 | 66.93 | 37.70 | 8.14 | -26.54 | 104.62 | 
| Co3O4@SiO2 (VFETOH = 50%) | 60.44 | 67.73 | 32.87 | 7.33 | -18.46 | 100.60 | 
| Co3O4@SiO2 (VFETOH = 90%) | 52.62 | 64.58 | 30.20 | 8.54 | -25.15 | 94.79 | 
| Co3O4@SiO2 (CCTAB = 5 mmol/L) | 55.62 | 74.72 | 36.68 | 6.59 | -20.69 | 111.40 | 
| Co3O4@SiO2 (CCTAB =25 mmol/L) | 66.68 | 72.18 | 31.01 | 6.83 | -15.76 | 103.19 | 
| Co3O4@SiO2 (VTEOS = 0.8 mL) | 81.68 | 70.60 | 34.06 | 7.12 | -15.97 | 104.65 | 
| Co3O4@SiO2 (VTEOS = 2.0 mL) | 73.55 | 64.75 | 27.90 | 6.28 | -18.74 | 92.64 | 
| [1] | 黄瑞丽. 国内环己酮生产现状及消费分析. 合成纤维工业, 2020, 43(4):63-67. | 
| [2] | 宋星星, 李永祥, 吴巍. 环己基过氧化氢分解工艺技术现状和发展. 化工进展, 2004, 23(3):322-325. | 
| [3] | IMANAKA N, MASUI T, JYOKO K. Selective liquid phase oxidation of cyclohexane over Pt/CeO2-ZrO2-SnO2/SiO2 catalysts with molecular oxygen. Journal of Advanced Ceramics, 2015, 4(2):111-117. DOI URL | 
| [4] | KIRILLOVA M V, KOZLOV Y N, SHUL'PINA L S, et al. Remarkably fast oxidation of alkanes by hydrogen peroxide catalyzed by a tetracopper(II) triethanolaminate complex: promoting effects of acid co-catalysts and water, kinetic and mechanistic features. Journal of Catalysis, 2009, 268(1):26-38. DOI URL | 
| [5] | SAINT-ARROMAN R P, BASSET J M, LEFEBVRE F, et al. Well-defined group IV supported catalysts: an efficient way to increase activities in the deperoxidation of cyclohexyl hydroperoxide with environmentally systems. Applied Catalysis A: General, 2005, 290(1/2):181-190. DOI URL | 
| [6] | GUO LULU, LI LIXIA, HE PENGCHENG, et al. Mesoporous material Co/SBA-15 as catalyst for the decomposition of cyclohexyl hydroperoxide. Journal of Inorganic Materials, 2017, 32(5):543-549. DOI URL | 
| [7] | OBAIDULLAHA M, BAHADURB N M, FURUSAWAA T, et al. Microwave assisted rapid synthesis of Fe2O3@SiO2 core-shell nanocomposite for the persistence of magnetic property at high temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 572:138-146. DOI URL | 
| [8] | WU S L, YANG R X, WEY M Y. Catalytic methane decomposition to hydrogen over a surface-protected core-shell Ni@SiO2 catalyst. Chemical Engineering & Technology, 2018, 41(7):1448-1456. | 
| [9] | LIU BING, WANG DEPING, HUANG WENHAI, et al. Preparation of core-shell SiO2/Fe3O4 nanocomposite particles via Sol-Gel approach. Journal of Inorganic Materials, 2008, 23(1):33-38. DOI URL | 
| [10] | PEJOVA B, ISAHI A, NAJDOSKI M, et al. Fabrication and characterization of nanocrystalline cobalt oxide thin films. Materials Research Bulletin, 2000, 36(2001):161-170. DOI URL | 
| [11] | ZHAO L, SHI S, LIU M, et al. Hydrophobic modification of microenvironment of highly dispersed Co3O4 nanoparticles for the catalytic selective oxidation of ethylbenzene. ChemCatChem, 2019, 12(3):903-910. DOI URL | 
| [12] | NEIVANDT D J, GEE M L, HAIR M L. Polarized infrared attenuated total reflection for the in situ determination of the orientation of surfactant adsorbed at the solid/solution interface. J. Phys. Chem. B, 1998, 102(26):5107-5114. DOI URL | 
| [13] | KIM J H, YOON S B, KIM J Y, et al. Synthesis of monodisperse silica spheres with solid core and mesoporous shell: morphological control of mesopores. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313-314:77-81. DOI URL | 
| [14] | YOON S B, KIM J Y, KIM J H, et al. Synthesis of monodisperse spherical silica particles with solid core and mesoporous shell: mesopore channels perpendicular to the surface. Journal of Materials Chemistry, 2007, 17(18):1758-1761. DOI URL | 
| [15] | YIN L, TIAN Q, BOYJOO Y, et al. Synthesis of colloidal mesoporous silica spheres with large through-holes on the shell. Langmuir, 2020, 36(25):6984-6993. DOI URL | 
| [16] | DING H L, ZHANG Y X, WANG S, et al. Fe3O4@SiO2 core/shell nanoparticles: the silica coating regulations with a single core for different core sizes and shell thicknesses. Chemistry of Materials, 2012, 24(23):4572-4580. DOI URL | 
| [17] | TENG Z, SU X, ZHENG Y, et al. Mesoporous silica hollow spheres with ordered radial mesochannels by a spontaneous self-transformation approach. Chemistry of Materials, 2012, 25(1):98-105. DOI URL | 
| [18] | ZHU H, MA Z, CLARK J C, et al. Low-temperature CO oxidation on Au/fumed SiO2-based catalysts prepared from Au(en)2Cl3 precursor. Applied Catalysis A: General, 2007, 326(1):89-99. DOI URL | 
| [1] | LIAN Minli, SU Jiaxin, HUANG Hongyang, JI Yuyin, DENG Haifan, ZHANG Tong, CHEN Chongqi, LI Dalin. Supported Ni Catalysts from Ni-Mg-Al Hydrotalcite-like Compounds:Preparation and Catalytic Performance for Ammonia Decomposition [J]. Journal of Inorganic Materials, 2025, 40(1): 53-60. | 
| [2] | YANG Endong, LI Baole, ZHANG Ke, TAN Lu, LOU Yongbing. ZnCo2O4-ZnO@C@CoS Core-shell Composite: Preparation and Application in Supercapacitors [J]. Journal of Inorganic Materials, 2024, 39(5): 485-493. | 
| [3] | ZHANG Tingting, WANG Fangyuan, LIU Changyou, ZHANG Guorong, LÜ Jiahui, SONG Yuchen, JIE Wanqi. Hydrothermal-sintering Preparation of Cr2+:ZnSe/ZnSe Nanotwins with Core-shell Structure [J]. Journal of Inorganic Materials, 2024, 39(4): 409-415. | 
| [4] | YUE Quanxin, GUO Ruihua, WANG Ruifen, AN Shengli, ZHANG Guofang, GUAN Lili. 3D Core-shell Structured NiMoO4@CoFe-LDH Nanorods: Performance of Efficient Oxygen Evolution Reaction and Overall Water Splitting [J]. Journal of Inorganic Materials, 2024, 39(11): 1254-1264. | 
| [5] | WU Rui, ZHANG Minhui, JIN Chenyun, LIN Jian, WANG Deping. Photothermal Core-Shell TiN@Borosilicate Bioglass Nanoparticles: Degradation and Mineralization [J]. Journal of Inorganic Materials, 2023, 38(6): 708-716. | 
| [6] | MA Xiaosen, ZHANG Lichen, LIU Yanchao, WANG Quanhua, ZHENG Jiajun, LI Ruifeng. 13X@SiO2: Synthesis and Toluene Adsorption [J]. Journal of Inorganic Materials, 2023, 38(5): 537-543. | 
| [7] | CHI Congcong, QU Panpan, REN Chaonan, XU Xin, BAI Feifei, ZHANG Danjie. Preparation of SiO2@Ag@SiO2@TiO2 Core-shell Structure and Its Photocatalytic Degradation Property [J]. Journal of Inorganic Materials, 2022, 37(7): 750-756. | 
| [8] | LI Bangxin, ZHANG Qian, XIAO Jie, XIAO Wenyan, ZHOU Ying. Iron-doping Enhanced Basic Nickel Carbonate for Moisture Resistance and Catalytic Performance of Ozone Decomposition [J]. Journal of Inorganic Materials, 2022, 37(1): 45-50. | 
| [9] | LI Meng-Xia, LU Yue, WANG Li-Bin, HU Xian-Luo. Controlled Synthesis of Core-shell Structured Mn3O4@ZnO Nanosheet Arrays for Aqueous Zinc-ion Batteries [J]. Journal of Inorganic Materials, 2020, 35(1): 86-92. | 
| [10] | GOU Sheng-Lian, NAI Xue-Ying, XIAO Jian-Fei, YE Jun-Wei, DONG Ya-Ping, LI Wu. Preparation and Thermal Decomposition of Basic Magnesium Chloride Whiskers [J]. Journal of Inorganic Materials, 2019, 34(7): 781-785. | 
| [11] | SONG Jing-Jing, CHEN Bo, LIN Kai-Li. Core-shell Structured Hydroxyapatite/Mesoporous Silica Nanoparticle: Preparation and Application in Drug Delivery [J]. Journal of Inorganic Materials, 2018, 33(6): 623-628. | 
| [12] | ZHOU Bei-Ying, CHEN Dong, LIU Jia-Le, JIANG Wan, LUO Wei, WANG Lian-Jun. Preparation and Property of CuInS2/ZnS Core-shell Quantum Dots in Aqueous Phase [J]. Journal of Inorganic Materials, 2018, 33(3): 279-283. | 
| [13] | YANG Tao, LI Xiao, TIAN Xiao-Dong, SONG Yan, LIU Zhan-Jun, GUO Quan-Gui. Preparation and Electrochemical Performance of Si@C/SiOx as Anode Material for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2017, 32(7): 699-704. | 
| [14] | GUO Lu-Lu, LI Li-Xia, HE Peng-Cheng, YUAN Xia. Mesoporous Material Co/SBA-15 as Catalyst for the Decomposition of Cyclohexyl Hydroperoxide [J]. Journal of Inorganic Materials, 2017, 32(5): 543-549. | 
| [15] | XIONG Mao-Zhen, YE Shuai, WANG Guang-Sheng, SONG Jun, QU Jun-Le. Spectra Analysis of Nd3+ Sensitized NaYF4:Yb@NaYF4:Ho Upconversion Nanoparticles [J]. Journal of Inorganic Materials, 2017, 32(2): 180-184. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||