Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (1): 65-71.DOI: 10.15541/jim20210192
• RESEARCH ARTICLE • Previous Articles Next Articles
CHEN Xiaomei(), CHEN Ying, YUAN Xia(
)
Received:
2021-03-24
Revised:
2021-04-23
Published:
2022-01-20
Online:
2021-11-12
Contact:
YUAN Xia, professor. E-mail: yuanxia@xtu.edu.cn
About author:
CHEN Xiaomei(1996-), female, Master candidate. E-mail: cxm1077@163.com
Supported by:
CLC Number:
CHEN Xiaomei, CHEN Ying, YUAN Xia. Decomposition of Cyclohexyl Hydroperoxide Catalyzed by Core-shell Material Co3O4@SiO2[J]. Journal of Inorganic Materials, 2022, 37(1): 65-71.
Fig. 4 TEM images and shell thickness statistics of Co3O4@SiO2 prepared with different concentrations of CTAB (a, b) 5 mmol/L; (c, d) 14 mmol/L; (e, f) 25 mmol/L
Sample | nCTAB/nTEOS | SBET/(m2∙g-1) | Dpore/nm | Vpore/(cm3∙g-1) |
---|---|---|---|---|
Co3O4@SiO2 (VFETOH = 30%) | 2.56 | 332 | 3.18 | 0.22 |
Co3O4@SiO2 (VFETOH = 50%) | 2.56 | 334 | 3.18 | 0.24 |
Co3O4@SiO2 (VFETOH = 90%) | 2.56 | 319 | 2.94 | 0.18 |
Co3O4@SiO2 (CCTAB = 5 mmol/L) | 0.93 | 254 | 2.82 | 0.16 |
Co3O4@SiO2 (CCTAB = 25 mmol/L) | 4.67 | 396 | 2.94 | 0.21 |
Co3O4@SiO2 (VTEOS = 0.8 mL) | 3.84 | 327 | 2.94 | 0.18 |
Co3O4@SiO2 (VTEOS = 2.0 mL) | 1.54 | 486 | 2.94 | 0.27 |
Table 1 Physical structural properties of catalytic materials
Sample | nCTAB/nTEOS | SBET/(m2∙g-1) | Dpore/nm | Vpore/(cm3∙g-1) |
---|---|---|---|---|
Co3O4@SiO2 (VFETOH = 30%) | 2.56 | 332 | 3.18 | 0.22 |
Co3O4@SiO2 (VFETOH = 50%) | 2.56 | 334 | 3.18 | 0.24 |
Co3O4@SiO2 (VFETOH = 90%) | 2.56 | 319 | 2.94 | 0.18 |
Co3O4@SiO2 (CCTAB = 5 mmol/L) | 0.93 | 254 | 2.82 | 0.16 |
Co3O4@SiO2 (CCTAB = 25 mmol/L) | 4.67 | 396 | 2.94 | 0.21 |
Co3O4@SiO2 (VTEOS = 0.8 mL) | 3.84 | 327 | 2.94 | 0.18 |
Co3O4@SiO2 (VTEOS = 2.0 mL) | 1.54 | 486 | 2.94 | 0.27 |
Entry | Sample | Co content/% |
---|---|---|
1 | Co3O4@SiO2 (VFETOH = 90%) | 39.9 |
2 | Co3O4@SiO2 (CCTAB = 5 mmol/L) | 40.1 |
3 | Co3O4@SiO2 (CCTAB = 25 mmol/L) | 39.3 |
4 | Co3O4@SiO2 (VTEOS = 0.8 mL) | 47.8 |
5 | Co3O4@SiO2 (VTEOS = 2.0 mL) | 30.6 |
Table 2 Co content of catalytic materials
Entry | Sample | Co content/% |
---|---|---|
1 | Co3O4@SiO2 (VFETOH = 90%) | 39.9 |
2 | Co3O4@SiO2 (CCTAB = 5 mmol/L) | 40.1 |
3 | Co3O4@SiO2 (CCTAB = 25 mmol/L) | 39.3 |
4 | Co3O4@SiO2 (VTEOS = 0.8 mL) | 47.8 |
5 | Co3O4@SiO2 (VTEOS = 2.0 mL) | 30.6 |
Catalytic material | Con./% | Selectivity/% | ||||
---|---|---|---|---|---|---|
A | K | Acid | Ester | A+K | ||
Blank | 11.58 | 162.27 | 36.16 | 12.56 | 14.40 | 198.43 |
Co3O4 | 86.83 | 69.15 | 38.08 | 6.73 | -15.63 | 107.23 |
Co3O4@SiO2 (VFETOH = 30%) | 41.54 | 66.93 | 37.70 | 8.14 | -26.54 | 104.62 |
Co3O4@SiO2 (VFETOH = 50%) | 60.44 | 67.73 | 32.87 | 7.33 | -18.46 | 100.60 |
Co3O4@SiO2 (VFETOH = 90%) | 52.62 | 64.58 | 30.20 | 8.54 | -25.15 | 94.79 |
Co3O4@SiO2 (CCTAB = 5 mmol/L) | 55.62 | 74.72 | 36.68 | 6.59 | -20.69 | 111.40 |
Co3O4@SiO2 (CCTAB =25 mmol/L) | 66.68 | 72.18 | 31.01 | 6.83 | -15.76 | 103.19 |
Co3O4@SiO2 (VTEOS = 0.8 mL) | 81.68 | 70.60 | 34.06 | 7.12 | -15.97 | 104.65 |
Co3O4@SiO2 (VTEOS = 2.0 mL) | 73.55 | 64.75 | 27.90 | 6.28 | -18.74 | 92.64 |
Table 3 Catalytic performance of catalytic materials in CHHP decomposition reaction
Catalytic material | Con./% | Selectivity/% | ||||
---|---|---|---|---|---|---|
A | K | Acid | Ester | A+K | ||
Blank | 11.58 | 162.27 | 36.16 | 12.56 | 14.40 | 198.43 |
Co3O4 | 86.83 | 69.15 | 38.08 | 6.73 | -15.63 | 107.23 |
Co3O4@SiO2 (VFETOH = 30%) | 41.54 | 66.93 | 37.70 | 8.14 | -26.54 | 104.62 |
Co3O4@SiO2 (VFETOH = 50%) | 60.44 | 67.73 | 32.87 | 7.33 | -18.46 | 100.60 |
Co3O4@SiO2 (VFETOH = 90%) | 52.62 | 64.58 | 30.20 | 8.54 | -25.15 | 94.79 |
Co3O4@SiO2 (CCTAB = 5 mmol/L) | 55.62 | 74.72 | 36.68 | 6.59 | -20.69 | 111.40 |
Co3O4@SiO2 (CCTAB =25 mmol/L) | 66.68 | 72.18 | 31.01 | 6.83 | -15.76 | 103.19 |
Co3O4@SiO2 (VTEOS = 0.8 mL) | 81.68 | 70.60 | 34.06 | 7.12 | -15.97 | 104.65 |
Co3O4@SiO2 (VTEOS = 2.0 mL) | 73.55 | 64.75 | 27.90 | 6.28 | -18.74 | 92.64 |
[1] | 黄瑞丽. 国内环己酮生产现状及消费分析. 合成纤维工业, 2020, 43(4):63-67. |
[2] | 宋星星, 李永祥, 吴巍. 环己基过氧化氢分解工艺技术现状和发展. 化工进展, 2004, 23(3):322-325. |
[3] |
IMANAKA N, MASUI T, JYOKO K. Selective liquid phase oxidation of cyclohexane over Pt/CeO2-ZrO2-SnO2/SiO2 catalysts with molecular oxygen. Journal of Advanced Ceramics, 2015, 4(2):111-117.
DOI URL |
[4] |
KIRILLOVA M V, KOZLOV Y N, SHUL'PINA L S, et al. Remarkably fast oxidation of alkanes by hydrogen peroxide catalyzed by a tetracopper(II) triethanolaminate complex: promoting effects of acid co-catalysts and water, kinetic and mechanistic features. Journal of Catalysis, 2009, 268(1):26-38.
DOI URL |
[5] |
SAINT-ARROMAN R P, BASSET J M, LEFEBVRE F, et al. Well-defined group IV supported catalysts: an efficient way to increase activities in the deperoxidation of cyclohexyl hydroperoxide with environmentally systems. Applied Catalysis A: General, 2005, 290(1/2):181-190.
DOI URL |
[6] |
GUO LULU, LI LIXIA, HE PENGCHENG, et al. Mesoporous material Co/SBA-15 as catalyst for the decomposition of cyclohexyl hydroperoxide. Journal of Inorganic Materials, 2017, 32(5):543-549.
DOI URL |
[7] |
OBAIDULLAHA M, BAHADURB N M, FURUSAWAA T, et al. Microwave assisted rapid synthesis of Fe2O3@SiO2 core-shell nanocomposite for the persistence of magnetic property at high temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 572:138-146.
DOI URL |
[8] | WU S L, YANG R X, WEY M Y. Catalytic methane decomposition to hydrogen over a surface-protected core-shell Ni@SiO2 catalyst. Chemical Engineering & Technology, 2018, 41(7):1448-1456. |
[9] |
LIU BING, WANG DEPING, HUANG WENHAI, et al. Preparation of core-shell SiO2/Fe3O4 nanocomposite particles via Sol-Gel approach. Journal of Inorganic Materials, 2008, 23(1):33-38.
DOI URL |
[10] |
PEJOVA B, ISAHI A, NAJDOSKI M, et al. Fabrication and characterization of nanocrystalline cobalt oxide thin films. Materials Research Bulletin, 2000, 36(2001):161-170.
DOI URL |
[11] |
ZHAO L, SHI S, LIU M, et al. Hydrophobic modification of microenvironment of highly dispersed Co3O4 nanoparticles for the catalytic selective oxidation of ethylbenzene. ChemCatChem, 2019, 12(3):903-910.
DOI URL |
[12] |
NEIVANDT D J, GEE M L, HAIR M L. Polarized infrared attenuated total reflection for the in situ determination of the orientation of surfactant adsorbed at the solid/solution interface. J. Phys. Chem. B, 1998, 102(26):5107-5114.
DOI URL |
[13] |
KIM J H, YOON S B, KIM J Y, et al. Synthesis of monodisperse silica spheres with solid core and mesoporous shell: morphological control of mesopores. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313-314:77-81.
DOI URL |
[14] |
YOON S B, KIM J Y, KIM J H, et al. Synthesis of monodisperse spherical silica particles with solid core and mesoporous shell: mesopore channels perpendicular to the surface. Journal of Materials Chemistry, 2007, 17(18):1758-1761.
DOI URL |
[15] |
YIN L, TIAN Q, BOYJOO Y, et al. Synthesis of colloidal mesoporous silica spheres with large through-holes on the shell. Langmuir, 2020, 36(25):6984-6993.
DOI URL |
[16] |
DING H L, ZHANG Y X, WANG S, et al. Fe3O4@SiO2 core/shell nanoparticles: the silica coating regulations with a single core for different core sizes and shell thicknesses. Chemistry of Materials, 2012, 24(23):4572-4580.
DOI URL |
[17] |
TENG Z, SU X, ZHENG Y, et al. Mesoporous silica hollow spheres with ordered radial mesochannels by a spontaneous self-transformation approach. Chemistry of Materials, 2012, 25(1):98-105.
DOI URL |
[18] |
ZHU H, MA Z, CLARK J C, et al. Low-temperature CO oxidation on Au/fumed SiO2-based catalysts prepared from Au(en)2Cl3 precursor. Applied Catalysis A: General, 2007, 326(1):89-99.
DOI URL |
[1] | YANG Endong, LI Baole, ZHANG Ke, TAN Lu, LOU Yongbing. ZnCo2O4-ZnO@C@CoS Core-shell Composite: Preparation and Application in Supercapacitors [J]. Journal of Inorganic Materials, 2024, 39(5): 485-493. |
[2] | ZHANG Tingting, WANG Fangyuan, LIU Changyou, ZHANG Guorong, LÜ Jiahui, SONG Yuchen, JIE Wanqi. Hydrothermal-sintering Preparation of Cr2+:ZnSe/ZnSe Nanotwins with Core-shell Structure [J]. Journal of Inorganic Materials, 2024, 39(4): 409-415. |
[3] | YUE Quanxin, GUO Ruihua, WANG Ruifen, AN Shengli, ZHANG Guofang, GUAN Lili. 3D Core-shell Structured NiMoO4@CoFe-LDH Nanorods: Performance of Efficient Oxygen Evolution Reaction and Overall Water Splitting [J]. Journal of Inorganic Materials, 2024, 39(11): 1254-1264. |
[4] | WU Rui, ZHANG Minhui, JIN Chenyun, LIN Jian, WANG Deping. Photothermal Core-Shell TiN@Borosilicate Bioglass Nanoparticles: Degradation and Mineralization [J]. Journal of Inorganic Materials, 2023, 38(6): 708-716. |
[5] | MA Xiaosen, ZHANG Lichen, LIU Yanchao, WANG Quanhua, ZHENG Jiajun, LI Ruifeng. 13X@SiO2: Synthesis and Toluene Adsorption [J]. Journal of Inorganic Materials, 2023, 38(5): 537-543. |
[6] | CHI Congcong, QU Panpan, REN Chaonan, XU Xin, BAI Feifei, ZHANG Danjie. Preparation of SiO2@Ag@SiO2@TiO2 Core-shell Structure and Its Photocatalytic Degradation Property [J]. Journal of Inorganic Materials, 2022, 37(7): 750-756. |
[7] | LI Bangxin, ZHANG Qian, XIAO Jie, XIAO Wenyan, ZHOU Ying. Iron-doping Enhanced Basic Nickel Carbonate for Moisture Resistance and Catalytic Performance of Ozone Decomposition [J]. Journal of Inorganic Materials, 2022, 37(1): 45-50. |
[8] | LI Meng-Xia, LU Yue, WANG Li-Bin, HU Xian-Luo. Controlled Synthesis of Core-shell Structured Mn3O4@ZnO Nanosheet Arrays for Aqueous Zinc-ion Batteries [J]. Journal of Inorganic Materials, 2020, 35(1): 86-92. |
[9] | GOU Sheng-Lian, NAI Xue-Ying, XIAO Jian-Fei, YE Jun-Wei, DONG Ya-Ping, LI Wu. Preparation and Thermal Decomposition of Basic Magnesium Chloride Whiskers [J]. Journal of Inorganic Materials, 2019, 34(7): 781-785. |
[10] | SONG Jing-Jing, CHEN Bo, LIN Kai-Li. Core-shell Structured Hydroxyapatite/Mesoporous Silica Nanoparticle: Preparation and Application in Drug Delivery [J]. Journal of Inorganic Materials, 2018, 33(6): 623-628. |
[11] | ZHOU Bei-Ying, CHEN Dong, LIU Jia-Le, JIANG Wan, LUO Wei, WANG Lian-Jun. Preparation and Property of CuInS2/ZnS Core-shell Quantum Dots in Aqueous Phase [J]. Journal of Inorganic Materials, 2018, 33(3): 279-283. |
[12] | YANG Tao, LI Xiao, TIAN Xiao-Dong, SONG Yan, LIU Zhan-Jun, GUO Quan-Gui. Preparation and Electrochemical Performance of Si@C/SiOx as Anode Material for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2017, 32(7): 699-704. |
[13] | GUO Lu-Lu, LI Li-Xia, HE Peng-Cheng, YUAN Xia. Mesoporous Material Co/SBA-15 as Catalyst for the Decomposition of Cyclohexyl Hydroperoxide [J]. Journal of Inorganic Materials, 2017, 32(5): 543-549. |
[14] | XIONG Mao-Zhen, YE Shuai, WANG Guang-Sheng, SONG Jun, QU Jun-Le. Spectra Analysis of Nd3+ Sensitized NaYF4:Yb@NaYF4:Ho Upconversion Nanoparticles [J]. Journal of Inorganic Materials, 2017, 32(2): 180-184. |
[15] | FAN Gui-Fen, XU Xing, WANG Kai, LV Wen-Zhong, LIANG Fei, JIN Shan-Long. Magnetoelectric Properties of Low Temperature Sintered CoFe2O4-(PZN-PZT) Multiferroic Composite Materials [J]. Journal of Inorganic Materials, 2016, 31(6): 561-566. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||