[1] |
DANG Q Q, LIU C Y, WANG X M , et al. Novel covalent triazine framework for high-performance CO2 capture and alkyne carboxylation reaction. ACS Applied Materials & Interfaces, 2018,10(33):27972-27978.
DOI
URL
|
[2] |
TORSÆTER M, CERASI P . Geological and geomechanical factors impacting loss of near-well permeability during CO2 injection. International Journal of Greenhouse Gas Control, 2018,76:193-199.
DOI
URL
|
[3] |
KARL T R, TRENBERTH K E . Modern global climate change. Science, 2003,302(5651):1719-1723.
DOI
URL
|
[4] |
LIN Y C, KONG C L, ZHANG Q J , et al. Metal-organic frameworks for carbon dioxide capture and methane storage. Advanced Energy Materials, 2017,7(4):1601296.
DOI
URL
|
[5] |
LU X Q, JIN D L, WEI S X , et al. Strategies to enhance CO2 capture and separation based on engineering absorbent materials. Journal of Materials Chemistry A, 2015,3(23):12118-12132.
DOI
URL
|
[6] |
WANG M H, WEI S X, WU Z H , et al. Alkyl amine functionalized triphenylamine-based covalent organic frameworks for high- efficiency CO2 capture and separation over N2. Materials Letters, 2018,230:28-31.
DOI
URL
|
[7] |
SUMIDA K, ROGOW D L, MASON J A , et al. Carbon dioxide capture in metal-organic frameworks. Chemical Reviews, 2011,112(2):724-781.
DOI
URL
|
[8] |
SEOANE B, CaSTELLANOS S, DiKHTIARENKO A, et al. Multi- scale crystal engineering of metal organic frameworks. Coordination Chemistry Reviews, 2016,307:147-187.
DOI
URL
|
[9] |
XIANG Z H, CAO D P, LAN J H , et al. Multiscale simulation and modelling of adsorptive processes for energy gas storage and carbon dioxide capture in porous coordination frameworks. Energy & Environmental Science, 2010,3(10):1469-1487.
|
[10] |
MILLWARD A R, YAGHI O M . Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. Journal of the American Chemical Society, 2005,127(51):17998-17999.
DOI
URL
|
[11] |
DEMESSENCE A, D’ALESSANDRO D M, FOO M L, et al. Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. Journal of the American Chemical Society, 2009,131(25):8784-8786.
DOI
URL
|
[12] |
LIU Y, WANG Z U, ZHOU H C . Recent advances in carbon dioxide capture with metal-organic frameworks. Greenhouse Gases: Science and Technology, 2012,2(4):239-259.
DOI
URL
|
[13] |
ZHANG Z J, ZHAO Y G, GONG Q H , et al. MOFs for CO2 capture and separation from flue gas mixtures: the effect of multifunctional sites on their adsorption capacity and selectivity. Chemical Communications, 2013,49(7):653-661.
DOI
URL
|
[14] |
KRAUSE S, BON V, SENKOVSKA I , et al. A pressure-amplifying framework material with negative gas adsorption transitions. Nature, 2016,532(7599):348.
DOI
URL
|
[15] |
EVANS J D, BOCQUET L, COUDERT F . X. Origins of negative gas adsorption. Chem, 2016,1(6):873-886.
DOI
URL
|
[16] |
POTOFF J J, SIEPMANN J I . Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE Journal, 2001,47(7):1676-1682.
DOI
URL
|
[17] |
RAPPÉ A K, CASEWIT C J, COLWELL K , et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 1992,114(25):10024-10035.
DOI
URL
|
[18] |
GUPTA A, CHEMPATH S, SANBORN M J , et al. Object-oriented programming paradigms for molecular modeling. Molecular Simulation, 2003,29(1):29-46.
DOI
URL
|
[19] |
LIU J Y, LIU S . A survey on applications of Voronoi diagrams. Journal of Engineering Graphics, 2004,2:125-132.
|
[20] |
AHMED A, BABARAO R, HUANG R , et al. Porous aromatic frameworks impregnated with lithiated fullerenes for natural gas purification. The Journal of Physical Chemistry C, 2015,119(17):9347-9354.
DOI
URL
|